Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 2
432
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Simulation of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications

, , &
Pages 133-149 | Received 17 Jul 2014, Accepted 13 Oct 2014, Published online: 31 Mar 2015

REFERENCES

  • G. J. Kolb, C. K. Ho, T. R. Mancini, and J. A. Gary Power Tower Technology Roadmap and Cost Reduction Plan, SAND2011–2419, Sandia National Laboratories, Albuquerque, NM, 2011.
  • C. K. Ho and B. D. Iverson Review of High-Temperature Central Receiver Designs for Concentrating Solar Power, Renew. Sust. Energ. Rev., vol. 29, pp. 835–846, 2014.
  • J. Martin and J. Vitko A Solar Central Receiver Utilizing a Solid Thermal Carrier, SAND82–8203, Sandia National Laboratories, Albuquerque, NM, 1982.
  • S. F. Wu and T. Narayama Commercial Direct Absorption Receiver Design Studies, SAND88–7038, Sandia National Laboratories, Albuquerque, NM, 1988.
  • C. Singer, R. Buck, R. Pitz-Paal, and H. Müller-Steinhagen Assessment of Solar Power Tower Driven Ultrasupercritical Steam Cycles Applying Tubular Central Receivers with Varied Heat Transfer Media, J. Solar Energ. Eng., vol. 132, pp. 1–12, 2010.
  • J. M. Hruby A Technical Feasibility Study of a Solid Particle Solar Central Receiver for High Temperature Applications, SAND 86–8211, Sandia National Laboratories, Albuquerque, NM, 1986.
  • P. Falcone, J. Noring, and J. Hruby Assessment of a Solid Particle Receiver for a High Temperature Solar Central Receiver System, SAND85–8208, Sandia National Laboratories, Albuquerque, NM, 1985.
  • J. Hruby, R. Steeper, G. Evans, and C. Crowe An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles, J. Fluids Eng., vol. 110, pp. 172–181, 1988.
  • G. Evans, W. Houf, R. Grief, and C. Crowe Numerical Modelling of a Solid Particle Solar Central Receiver, SAND85–8249, Sandia National Laboratories, Albuquerque, NM,1985.
  • G. Evans, W. Houf, R. Grief, and C. Crowe Gas-particle Flow within a High Temperature Solar Cavity Receiver Including Radiation Heat Transfer, J. Sol. Energy Eng., vol. 109, pp. 134–142, 1987.
  • A. Meier A Predictive CFD Model for a Falling Particle Receiver/Reactor Exposed to Concentrated Sunlight, Chem. Eng. Sci., vol. 54, pp. 2899–2905, 1999.
  • H. Chen, Y. Chen, H. T. Hsieh and N. Siegel Computational Fluid Dynamics Modeling of Gas-particle Flow within a Solid-particle Solar Receiver, J. Sol. Energy Eng., vol. 129, pp. 160–170, 2007.
  • N. Siegel and G. Kolb Design and On-Sun Testing of a Solid Particle Receiver Prototype, Proc. ES2008, Jacksonville, FL, 2008.
  • C. Ho, S. Khalsa, and N. Siegel Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Properties, Proc. ES2009, San Francisco, CA, 2009.
  • M. Röger, L. Amsbeck, G. Gobereit, and R. Buck Face-Down Solid Particle Receiver Using Recirculation, J. Sol. Energy Eng., vol. 133, pp. 031009–1-8, 2011.
  • B. Gobereit, L. Amsbeck, R. Buck, H. Müller-Steinhagen, and R. Pitz-Paal Assessment of a Falling Solid Particle Receiver with Numerical Simulation, Proc. SolarPACES 2012., Marrakech, Morocco, 2012.
  • G. Xiao, K. K. Guo, Z. Y. Luo, M. J. Ni, Y. M. Zhang, and C. Wang Simulation and Experimental Study on a Spiral Solid Particle Solar Receiver, Appl. Energy, vol. 113, pp. 178–188, 2014.
  • R. Bertocchi, J. Karni, and A. Kribus Experimental Evaluation of a Non-isothermal High Temperature Solar Particle Receiver, Energy, vol. 29, pp. 687–700, 2004.
  • H. Klein, J. Karni, R. Ben-Zvi, and R. Bertocchi Heat Transfer in a Directly Solar Receiver/Reactor for Solid–Gas Reactions, Solar Energy, 81, pp. 1227–1239, 2007.
  • A. Hunt and F. Miller Small Particle Heat Exchanger Receivers for Solar Thermal Power, Proc. SolarPACES 2010, Perpignan, France, 2010.
  • A. Crocker and F. Miller Fluid Flow and Radiation Modeling of a Cylindrical Small Particle Solar Receiver, Proc. SolarPACES 2011, Granada, Spain, 2011.
  • T. Tan and Y. Chen Review of Study on Solid Particle Receivers, Renew. Sust. Energy Rev., vol. 14, pp. 265–276, 2010.
  • Y.-T. Yang and P.-J. Chen Numerical Study of a Solar Collector with Partitions, Numerical Heat Transfer, Part A: Appl, vol. 66 (7), pp. 773–791, 2014.
  • A. S. Yadav and J. L. Bhagoria A Numerical Investigation of Turbulent Flows Through an Artificially Roughened Solar Air Heater, Numerical Heat Transfer, Part A: Appl, vol. 65 (7), pp. 679–698, 2014.
  • B. J. Hathaway, W. Lipiski, and J. H. Davidson Heat Transfer in a Solar Cavity Receiver: Design Considerations, Numerical Heat Transfer, Part A: Appl, vol. 62 (5), pp. 445–461, 2012.
  • W. Wu, L. Amsbeck, R. Buck, R. Uhlig, and R. Pitz-Paal Proof of Concept Test of a Centrifugal Particle Receiver, Energy Procedia, 49, pp. 560–568, 2014.
  • W. Wu, D. Trebing, L. Amsbeck, R. Buck, and R. Pitz-Paal Prototype Testing of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications, J. Sol. Energy Eng., 2014 ( in press).
  • J. Griffin and K. Stahl Optical Properties of Solid Particle Receiver Materials I, II, Sol. Energ. Mater., vol. 14, pp. 395–425, 1986.
  • ANSYS Mechanical APDL 14.0, User's Guide, 2011.
  • G. Comini, S. Del Guidice and C. Nonino Finite Element Analysis in Heat Transfer: Basic Formulation and Linear Problems, Taylor & Francis, New York, 1994.
  • M. F. Cohen and D. P. Greenberg The Hemi-Cube: A Radiosity Solution for Complex Environments. SIGGRAPH '85 Proc. of the 12th Annual Conference on Computer Graphics and Interactive Techniques, San Francisco, CA, 1985.
  • VDI Wärmeatlas Springer, Berlin, Heidelberg, Germany, 2006
  • W. Wu, L. Amsbeck, R. Buck, N. Waibel, P. Langner, and R. Pitz-Paal On the Influence of Rotation on Thermal Convection in a Rotating Cavity for Solar Receiver Applications, Appl. Therm. Eng., 70, pp. 694–704, 2014.
  • A. M. Clausing, J. M. Waldvogel, and L. D. Lister Natural Convection from Isothermal Cubical Cavities with a Variety of Side-facing Apertures, J. Heat Transfer, vol. 109, pp. 407–412, 1987.
  • T. Taumoefolau, S. Paitoonsurikarn, G. Hughes, and K. Lovegrove Experimental Investigation of Natural Convection Heat Loss from a Model Solar Concentrator Cavity Receiver, J. Sol. Energy Eng., vol. 126, pp. 801–807, 2004.
  • N. Waibel Experimentelle Untersuchung der Konvektionsverluste eines rotierenden Hohlraumreceivers für Solarturmkraftwerke, Master's Thesis, Technische Universität München, Munich, Germany, 2011.
  • N. Siegel Private Communication, 2012.
  • R. Uhlig FEMRAY User's Manual, DLR, Stuttgart, Germany, 2010.
  • R. Buck SPRAY User's Manual, DLR, Stuttgart, Germany, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.