Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 4
454
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Dynamic Simulation on the Thermal Conductivity of Nanofluids in Aggregated and Non-Aggregated States

, , &
Pages 432-453 | Received 13 Jul 2014, Accepted 07 Nov 2014, Published online: 23 Apr 2015

REFERENCES

  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., vol. 78, pp. 718–720, 2001.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., vol. 79, pp. 2252–2254, 2001.
  • Y. Xuan and Q. Li Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, vol. 21, pp. 58–64, 2000.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, J. Heat Transfer, vol. 125, pp. 567–574, 2003.
  • S. M. S. Murshed, K. C. Leong, and C. Yang Enhanced Thermal Conductivity of Tio2—Water Based Nanofluids, Int. J. Therm. Sci., vol. 44, pp. 367–373, 2005.
  • P. Keblinski, S. Phillpot, S. Choi, and J. Eastman Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transfer, vol. 45, pp. 855–863, 2002.
  • S. P. Jang and S. U. S. Choi Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids, Appl. Phys. Lett., vol. 84, pp. 4316–4318, 2004.
  • D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das Model for Heat Conduction in Nanofluids, Phys. Rev. Lett., vol. 93, pp. 144301-1–144301-4, 2004.
  • W. Evans, J. Fish, and P. Keblinski Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity, Appl. Phys. Lett., vol. 88, pp. 093116-1–093116-3, 2006.
  • Q. Xue and W. M. Xu A Model of Thermal Conductivity of Nanofluids with Interfacial Shells, Mater. Chem. Phys., vol. 90, pp. 298–301, 2005.
  • H. Xie, M. Fujii, and X. Zhang Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture, Int. J. Heat Mass Transfer, vol. 48, pp. 2926–2932, 2005.
  • L. Xue, P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman Two Regimes of Thermal Resistance at a Liquid–Solid Interface, J. Chem. Phys., vol. 118, pp. 337–339, 2003.
  • L. Xue, P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman Effect of Liquid Layering at the Liquid–Solid Interface on Thermal Transport, Int. J. Heat Mass Transfer, vol. 47, pp. 4277–4284, 2004.
  • P. Shima, J. Philip, and B. Raj Role of Microconvection Induced by Brownian Motion of Nanoparticles in the Enhanced Thermal Conductivity of Stable Nanofluids, Appl. Phys. Lett., vol. 94, pp. 223101-1–223101-3, 2009.
  • R. Prasher, P. Bhattacharya, and P. E. Phelan Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids, J. Heat Transfer, vol. 128, pp. 588–595, 2006.
  • R. Prasher, P. Bhattacharya, and P. E. Phelan Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids), Phys. Rev. Lett., vol. 94, pp. 25901-1–25901-4, 2005.
  • R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids, Appl. Phys. Lett., vol. 89, pp. 143119-1–143119-3, 2006.
  • R. Prasher, P. E. Phelan, and P. Bhattacharya Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid), Nano Lett., vol. 6, pp. 1529–1534, 2006.
  • W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids, Int. J. Heat Mass Transfer, vol. 51, pp. 1431–1438, 2008.
  • P. Keblinski Fundamentals of Energy Transport in Nanofluids, Rensselaer Polytechnic Institute (RPI). DE-FG02–04ER46104, Troy, United States, 2007.
  • B. X. Wang, L. P. Zhou, and X. F. Peng A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles, Int. J. Heat Mass Transfer, vol. 46, pp. 2665–2672, 2003.
  • H. Zhu, C. Zhang, S. Liu, Y. Tang, and Y. Yin Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids, Appl. Phys. Lett., vol. 89, pp. 23123–23123, 2006.
  • Y. Xuan, Q. Li, and W. Hu Aggregation Structure and Thermal Conductivity of Nanofluids, AIChE J., vol. 49, pp. 1038–1043, 2003.
  • J. Eapen, R. Rusconi, R. Piazza, and S. Yip The Classical Nature of Thermal Conduction in Nanofluids, J. Heat Transfer, vol. 132, pp. 1–14, 2010.
  • J. Eapen, J. Li, and S. Yip Beyond the Maxwell Limit: Thermal Conduction in Nanofluids with Percolating Fluid Structures, Phys. Rev. E., vol. 76, pp. 062501-1–062501-4, 2007.
  • J. Eapen Mean-Field Bounds, and the Classical Nature of Thermal Conduction in Nanofluids, Heat Transfer, ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences, Jacksonville, FL, vol. 1, pp. 343–344, American Society of Mechanical Engineers, 2008.
  • D. C. Venerus, M. S. Kabadi, S. Lee, and V. Perez-Luna Study of Thermal Transport in Nanoparticle Suspensions Using Forced Rayleigh Scattering, J. Appl. Phys., vol. 100, pp. 094310-1–094310-5, 2006.
  • S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge, and R. G. Shimmin Thermal Conductivity of Nanoparticle Suspensions, J. Appl. Phys., vol. 99, pp. 084308–1–084308–6, 2006.
  • H. Q. Xie, J. C. Wang, T. G. Xi, and Y. Liu Thermal Conductivity of Suspensions Containing Nanosized Sic Particles, Int. J. Thermophys., vol. 23, pp. 571–580, 2002.
  • M. Chopkar, P. K. Das, and I. Manna Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications, Scr. Mater., vol. 55, pp. 549–552, 2006.
  • M. Chopkar, S. Kumar, D. Bhandari, P. K. Das, and I. Manna Development and Characterization of Al2 Cu and Ag2 Al Nanoparticle Dispersed Water and Ethylene Glycol Based Nanofluid, Mater. Sci. Eng.: B, vol. 139, pp. 141–148, 2007.
  • D. H. Yoo, K. Hong, and H. S. Yang Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids, Thermochim. Acta, vol. 455, pp. 66–69, 2007.
  • J. A. Eastman, S. R. Phillpot, S. U. S. Choi, and P. Keblinski Thermal Transport in Nanofluids, Ann. Rev. Mater. Res., vol. 34, pp. 219–246, 2004.
  • J. Philip, P. Shima, and B. Raj Evidence for Enhanced Thermal Conduction through Percolating Structures in Nanofluids, Nanotechnology, vol. 19, pp. 305706-1–305706-7, 2008.
  • J. Hong and D. Kim Effects of Aggregation on the Thermal Conductivity of Alumina/Water Nanofluids, Thermochim. Acta, vol. 542, pp. 28–32, 2012.
  • N. Shalkevich, A. Shalkevich, and T. Bürgi Thermal Conductivity of Concentrated Colloids in Different States, J. Phys. Chem. C, vol. 114, pp. 9568–9572, 2010.
  • L. Chen, Y. L. He, and W. Q. Tao The Temperature Effect on the Diffusion Processes of Water and Proton in the Proton Exchange Membrane Using Molecular Dynamics Simulation, Numer. Heat Transfer, Part A, vol. 65, pp. 216–228, 2014.
  • M. Darbandi, M. Sabouri, and S. Jafari Thermal Wall Model Effect on the Lid-Driven Nanocavity Flow Simulation Using the Molecular Dynamics Method, Numer. Heat Transfer, Part B, vol. 63, pp. 248–261, 2013.
  • W. Zhou, H. Luan, J. Sun, Y. He, and W. Tao A Molecular Dynamics and Lattice Boltzmann Multiscale Simulation for Dense Fluid Flows, Numer. Heat Transfer, Part B, vol. 61, pp. 369–386, 2012.
  • S. Sarkar, and R. P. Selvam Thermal Conductivity Computation of Nanofluids by Equilibrium Molecular Dynamics Simulation: Nanoparticle Loading, and Temperature Effect, MRS Online Proceedings Library, 2007 MRS Spring Meeting-Symposium II-Nanoscale Heat Transport- From Fundamental to Devices, San Francisco, USA, vol. 1022, pp. 1022-II01–08, Cambridge University Press, 2007.
  • S. Sarkar and R. P. Selvam Molecular Dynamics Simulation of Effective Thermal Conductivity, and Study of Enhanced Thermal Transport Mechanism in Nanofluids, J. Appl. Phys., vol. 102, pp. 074302-1–074302-7, 2007.
  • Y. S. Lin, P. Y. Hsiao, and C. C. Chieng Thermophysical Characteristics of Ethylene Glycol-Based Copper Nanofluids Using Nonequilibrium and Equilibrium Methods, Int. J. Therm. Sci., vol. 62, pp. 56–60, 2012.
  • H. Kang, Y. Zhang, and M. Yang Molecular Dynamics Simulation of Thermal Conductivity of Cu–Ar Nanofluid Using Eam Potential for Cu–Cu Interactions, Appl. Phys. A: Mater. Sci. Process., vol. 103, pp. 1001–1008, 2011.
  • T. Jia, Y. Zhang, H. Ma, and J. Chen Investigation of the Characteristics of Heat Current in a Nanofluid Based on Molecular Dynamics Simulation, Appl. Phys. A: Mater. Sci. Process., vol. 108, pp. 537–544, 2012.
  • M. M. Ghosh, S. Roy, S. K. Pabi, and S. Ghosh A Molecular Dynamics-Stochastic Model for Thermal Conductivity of Nanofluids and Its Experimental Validation, J. Nanosci. Nanotechnol., vol. 11, pp. 2196–2207, 2011.
  • L. Li, Y. Zhang, H. Ma, and M. Yang An Investigation of Molecular Layering at the Liquid-Solid Interface in Nanofluids by Molecular Dynamics Simulation, Phys. Lett. A, vol. 372, pp. 4541–4544, 2008.
  • Y. S. Lin, P. Y. Hsiao, and C. C. Chieng Roles of Nanolayer, and Particle Size on Thermophysical Characteristics of Ethylene Glycol-Based Copper Nanofluids, Appl. Phys. Lett., vol. 98, pp. 153105-1–153105-3, 2011.
  • X. Wu, R. Kumar, and P. Sachdeva Calculation of Thermal Conductivity in Nanofluids from Atomic-Scale Simulations, Heat Transfer, Part B, ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, FL, vol. -, pp. 759–765, American Society of Mechanical Engineers, 2005.
  • H. Kang, Y. Zhang, M. Yang, and L. Li Molecular Dynamics Simulation on Effect of Nanoparticle Aggregation on Transport Properties of a Nanofluid, J. Nanotechnol. Eng. Med., vol. 3, pp. 021001-1–021001-6, 2012.
  • R. Kubo, M. Yokota, and S. Nakajima Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance, J. Phys. Soc. Japan, vol. 12, pp. 1203–1211, 1957.
  • R. E. Jones and K. K. Mandadapu Adaptive Green-Kubo Estimates of Transport Coefficients from Molecular Dynamics Based on Robust Error Analysis, J. Chem. Phys., vol. 136, pp. 154102-1–154102-16, 2012.
  • H. Babaei, P. Keblinski, and J. M. Khodadadi Equilibrium Molecular Dynamics Determination of Thermal Conductivity for Multi-Component Systems, J. Appl. Phys., vol. 112, pp. 054310-1–054310-5, 2012.
  • J. E. Lennard-Jones and A. F. Devonshire Critical Phenomena in Gases. I, Series A, Mathematical and Physical Sciences, Proc. R. Soc. London, vol. 163, pp. 53–70, 1937.
  • C. L. Kong Combining Rules for Intermolecular Potential Parameters, II. Rules for the Lennard-Jones (12–6) Potential and the Morse Potential, J. Chem. Phys., vol. 59, pp. 2464–2467, 2003.
  • S. Plimpton Lammps-Large-Scale Atomic/Molecular Massively Parallel Simulator. 2003, Available from: http://lammps.sandia.gov/.
  • W. Humphrey, A. Dalke, and K. Schulten Vmd: Visual Molecular Dynamics, J. Mol. Graphics, vol. 14, pp. 33–38, 1996.
  • F. Müller-Plathe A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity, J. Chem. Phys., vol. 106, pp. 6082–6085, 1997.
  • J. M. Haile Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York, 1992.
  • N. Sankar, N. Mathew, and C. Sobhan Molecular Dynamics Modeling of Thermal Conductivity Enhancement in Metal Nanoparticle Suspensions, Int. Commun. Heat Mass Transfer, vol. 35, pp. 867–872, 2008.
  • H. Kaburaki Thermal Transport Process by the Molecular Dynamics Method, in S. Yip (eds), Handbook of Materials Modeling, chap. 2. Springer, Netherlands, 2005.
  • A. McGaughey and M. Kaviany Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part I. Lennard-Jones Argon, Int. J. Heat Mass Transfer, vol. 47, pp. 1783–1798, 2004.
  • P. Keblinski, R. Prasher, and J. Eapen Thermal Conductance of Nanofluids: Is the Controversy Over?, J. Nanopart. Res., vol. 10, pp. 1089–1097, 2008.
  • Z. Hashin and S. Shtrikman A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials, J. Appl. Phys., vol. 33, pp. 3125–3131, 1962.
  • J. Eapen, J. Li, and S. Yip Mechanism of Thermal Transport in Dilute Nanocolloids, Phys. Rev. Lett., vol. 98, pp. 28302-1–28302-4, 2007.
  • K. L. Teng, P. Y. Hsiao, S. W. Hung, C. C. Chieng, M. S. Liu, and M. C. Lu Enhanced Thermal Conductivity of Nanofluids Diagnosis by Molecular Dynamics Simulations, J. Nanosci. Nanotechnol., vol. 8, pp. 3710–3718, 2008.
  • J. Wang, R. Zheng, J. Gao, and G. Chen Heat Conduction Mechanisms in Nanofluids and Suspensions, Nano Today, vol. 7, pp. 124–136, 2012.
  • C. Nie, W. Marlow, and Y. Hassan Discussion of Proposed Mechanisms of Thermal Conductivity Enhancement in Nanofluids, Int. J. Heat Mass Transfer, vol. 51, pp. 1342–1348, 2008.
  • P. Keblinski and D. G. Cahill Comment on “Model for Heat Conduction in Nanofluids”, Phys. Rev. Lett., vol. 95, pp. 209401–1, 2005.
  • S. Bastea Comment on “Model for Heat Conduction in Nanofluids”, Phys. Rev. Lett., vol. 95, pp. 19401–1, 2005.
  • J. Eapen, W. C. Williams, J. Buongiorno, L. Hu, S. Yip, R. Rusconi, and R. Piazza Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction, Phys. Rev. Lett., vol. 99, pp. 095901-1–095901-4, 2007.
  • M. Vladkov and J. L. Barrat Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid, Nano Lett., vol. 6, pp. 1224–1228, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.