Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 6
323
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Natural Convection in a Square Enclosure with a Square Heat Source at Different Horizontal and Diagonal Eccentricities

&
Pages 686-710 | Received 22 Sep 2014, Accepted 01 Dec 2014, Published online: 23 Apr 2015

REFERENCES

  • S. M. Dash, T. S. Lee, and H. Huang Natural Convection from an Eccentric Square Cylinder Using a Novel Flexible Forcing Ib-Lbm Method, Numer. Heat Transfer, Part A: Appl., vol. 65, pp. 531–555, 2013.
  • B. S. Kim, D. S. Lee, M. Y. Ha, and H. S. Yoon A Numerical Study of Natural Convection in a Square Enclosure with a Circular Cylinder at Different Vertical Locations, Int. J. Heat Mass Transfer, vol. 51, pp. 1888–1906, 2008.
  • S. H. Hussain and A. K. Hussein Numerical Investigation of Natural Convection Phenomena in a Uniformly Heated Circular Cylinder Immersed in Square Enclosure Filled with Air at Different Vertical Locations, Int. Commun. Heat Mass Transfer, vol. 37, pp. 1115–1126, 2010.
  • J. M. Lee, M. Y. Ha, and H. S. Yoon Natural Convection in a Square Enclosure with a Circular Cylinder at Different Horizontal and Diagonal Locations, Int. J. Heat Mass Transfer, vol. 53, pp. 5905–5919, 2010.
  • H. Bararnia, S. Soleimani, and D. D. Ganji Lattice Boltzmann Simulation of Natural Convection Around a Horizontal Elliptic Cylinder Inside a Square Enclosure, Int. Commun. Heat Mass Transfer, vol. 38, pp. 1436–1442, 2011.
  • S. A. Nabavizadeh, S. Talebi, M. Sefid, and M. Nourmohammadzadeh Natural Convection in a Square Cavity Containing a Sinusoidal Cylinder, Int. J. Therm. Sci., vol. 51, pp. 112–120, 2012.
  • H. S. Yoon, J. H. Jung, and Y. G. Park Natural Convection in a Square Enclosure with Two Horizontal Cylinders, Numer. Heat Transfer, Part A: Appl., vol. 62, pp. 701–721, 2012.
  • H. Asan Natural Convection in an Annulus between Two Isothermal Concentric Square Ducts, Int. Commun. Heat Mass Transfer, vol. 27, pp. 367–376, 2000.
  • M. Y. Ha, I.-K. Kim, H. S. Yoon, K. S. Yoon, J. R. Lee, S. Balachandar, and H. H. Chun Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure with a Square Body, Numer. Heat Transfer, Part A: Appl., vol. 41, pp. 183–210, 2002.
  • A. Kumar De, and A. Dalal, A Numerical Study of Natural Convection around a Square Horizontal, Heated Cylinder Placed in an Enclosure, Int. J. Heat Mass Transfer, vol. 49, pp. 4608–4623, 2006.
  • S. Dash and T. Lee Natural Convection from Inclined Square Cylinder Using Novel Flexible Forcing Ib-Lbm Approach, Eng. Appl. Comput. Fluid Mech., vol. 8, pp. 91–103, 2014.
  • S. K. Kang and Y. A. Hassan A Comparative Study of Direct-Forcing Immersed Boundary-Lattice Boltzmann Methods for Stationary Complex Boundaries, Int. J. Numer. Methods Fluids, vol. 66, pp. 1132–1158, 2011.
  • Z. G. Feng and E. E. Michaelides The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid–Particles Interaction Problems, J. Comput. Phys., vol. 195, pp. 602–628, 2004.
  • J. Wu and C. Shu Implicit Velocity Correction-Based Immersed Boundary-Lattice Boltzmann Method and Its Applications, J. Comput. Phys., vol. 228, pp. 1963–1979, 2009.
  • X. D. Niu, C. Shu, Y. T. Chew, and Y. Peng A Momentum Exchange-Based Immersed Boundary-Lattice Boltzmann Method for Simulating Incompressible Viscous Flows, Phys. Lett., Sect. A: Gen. At. Solid State Phys., vol. 354, pp. 173–182, 2006.
  • C. Shu, N. Liu, and Y. T. Chew A Novel Immersed Boundary Velocity Correction–Lattice Boltzmann Method and Its Application to Simulate Flow Past a Circular Cylinder, J. Comput. Phys., vol. 226, pp. 1607–1622, 2007.
  • S.-K. Choi and S.-O. Kim Comparative Analysis of Thermal Models in the Lattice Boltzmann Method for the Simulation of Natural Convection in a Square Cavity, Numer. Heat Transfer, Part B: Fundam., vol. 60, pp. 135–145, 2011.
  • P. Lopez and Y. Bayazitoglu High Knudsen Number Thermal Flows with the D2q13 Lattice Boltzmann Model, Numer. Heat Transfer, Part A: Appl., vol. 64, pp. 93–106, 2013.
  • F. Kuznik and G. Rusaouen Numerical Prediction of Natural Convection Occurring in Building Components: A Double-Population Lattice Boltzmann Method, Numer. Heat Transfer, Part A: Appl., vol. 52, pp. 315–335, 2007.
  • Y. Chen, H. Ohashi, and M. Akiyama Two-Parameter Thermal Lattice BGK Model with a Controllable Prandtl Number, J. Sci. Comput., vol. 12, pp. 169–185, 1997.
  • Y. Shi, T. S. Zhao, and Z. L. Guo Thermal Lattice Bhatnagar-Gross-Krook Model for Flows with Viscous Heat Dissipation in the Incompressible Limit, Phys. Rev. E, vol. 70, pp. 066310, 2004.
  • X. He, S. Chen, and G. D. Doolen A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit, J. Comput. Phys., vol. 146, pp. 282–300, 1998.
  • Y. Peng, C. Shu, and Y. T. Chew Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows, Phys. Rev. E. Stat. Nonlinear Soft Matter Phys., vol. 68, pp. 026701, 2003.
  • S. K. Kang and Y. A. Hassan A Direct-Forcing Immersed Boundary Method for the Thermal Lattice Boltzmann Method, Comput. Fluids, vol. 49, pp. 36–45, 2011.
  • C. S. Peskin Numerical Analysis of Blood Flow in the Heart, J. Comput. Phys., vol. 25, pp. 220–252, 1977.
  • Z. Wang, J. Fan, and K. Luo Combined Multi-Direct Forcing and Immersed Boundary Method for Simulating Flows with Moving Particles, Int. J. Multiphase Flow, vol. 34, pp. 283–302, 2008.
  • Z. Guo, C. Zheng, and B. Shi, Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method Phys. Rev. E. Stat. Nonlinear Soft Matter Phys., vol. 65, pp. 046308/046301–046308/046306, 2002.
  • L. S. Luo Unified Theory of Lattice Boltzmann Models for Nonideal Gases, Phys. Rev. Lett., vol. 81, pp. 1618–1621, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.