Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 10
212
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

A Single-Component Nonhomogeneous Lattice Boltzmann Model for Natural Convection in Al2O3/Water Nanofluid

, &
Pages 1106-1124 | Received 14 Oct 2014, Accepted 15 Jan 2015, Published online: 23 Jun 2015

REFERENCES

  • S. U. Choi and J. Eastman, Enhancing Thermal Conductivity of Fluids With Nanoparticles, Technical Rept., Argonne National Lab., IL, USA, 1995.
  • J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, and S. Lee, Enhanced Thermal Conductivity Through the Development of Nanofluids, MRS Proc., vol. 457, 1996.
  • S. Ozerinc, S. Kakac, and A. G. Yazicioglu, Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review, Microfluid. Nanofluid., vol. 8, pp. 145–170, 2010.
  • H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George, and T. Pradeep, Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., vol. 83, p. 2931–2933, 2003.
  • T. K. Hong, H. S. Yang, and C. J. Choi, Study of the Enhanced Thermal Conductivity of Fe Nanofluids, J. Appl. Phys., vol. 97, p. 064311-1-4, 2005.
  • S. K. Das, S. U. S. Choi, and H. E. Patel, Heat Transfer in Nanofluids—A Review, Heat Transfer Eng., vol. 27, pp. 3–9, 2006.
  • S. Kakac and A. Pramuanjaroenkij, Review of Convective Heat Transfer Enhancement with Nanofluids, Int. J. Heat Mass Transfer, vol. 52, pp. 3187–3196, 2009.
  • N. Putra, W. Roetzel, and S. K. Das, Natural Convection of Nanofluids, Heat Mass Transfer, vol. 39, pp. 775–784, 2003.
  • D. Wen and Y. Ding, Formulation of Nanofluids for Natural Convective Heat Transfer Applications, Int. J. Heat Fluid Flow, vol. 26, pp. 855–864, 2005.
  • A. G. Nnanna, Experimental Model of Temperature-Driven Nanofluid, J. Heat Transfer, vol. 129, pp. 697–704, 2006.
  • C. H. Li and G. Peterson, Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids), Adv. Mech. Eng., vol. 2010, pp. 1–10, 2010.
  • C. Ho, W. Liu, Y. Chang, and C. Lin, Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study, Int. J. Therm. Sci., vol. 49, pp. 1345–1353, 2010.
  • K. Khanafer, K. Vafai, and M. Lightstone, Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, Int. J. Heat Mass Transfer, vol. 46, pp. 3639–3653, 2003.
  • R. Y. Jou and S. C. Tzeng, Numerical Research of Nature Convective Heat Transfer Enhancement Filled with Nanofluids in Rectangular Enclosures, Int. Commun. Heat Mass Transfer, vol. 33, pp. 727–736, 2006.
  • C. Ho, M. Chen, and Z. Li, Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity, Int. J. Heat Mass Transfer, vol. 51, pp. 4506–4516, 2008.
  • H. F. Oztop and E. Abu-Nada, Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids, Int. J. Heat Fluid Flow, vol. 29, pp. 1326–1336, 2008.
  • E. Abu-Nada, Z. Masoud, H. F. Oztop, and A. Campo, Effect of Nanofluid Variable Properties on Natural Convection in Enclosures, Int. J. Therm. Sci., vol. 49, pp. 479–491, 2010.
  • K. C. Lin and A. Violi, Natural Convection Heat Transfer of Nanofluids in a Vertical Cavity: Effects of Non-Uniform Particle Diameter and Temperature on Thermal Conductivity, Int. J. Heat Fluid Flow, vol. 31, pp. 236–245, 2010.
  • M. Jahanshahi, S. Hosseinizadeh, M. Alipanah, A. Dehghani, and G. Vakilinejad, Numerical Simulation of Free Convection Based on Experimental Measured Conductivity in a Square Cavity Using Water/SiO2 Nanofluid, Int. Commun. Heat Mass Transfer, vol. 37, pp. 687–694, 2010.
  • G. Kefayati, S. Hosseinizadeh, M. Gorji, and H. Sajjadi, Lattice Boltzmann Simulation of Natural Convection in Tall Enclosures Using Water/SiO2 Nanofluid, Int. Commun. Heat Mass Transfer, vol. 38, pp. 798–805, 2011.
  • S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford, London, 2001.
  • J. Buongiorno, Convective Transport in Nanofluids, Trans. ASME Ser. C J. Heat Transfer, vol. 128, pp. 240–250, 2006.
  • A. Bejan, Convection Heat Transfer, John Wiley & Sons, NJ, 2004.
  • V. A. F. Costa, Bejan's Heatlines and Masslines for Convection Visualization and Analysis, Trans. ASME, vol. 59, pp. 126–145, 2006.
  • T. Basak, S. Roy, and I. Pop, Heat Flow Analysis for Natural Convection Within Trapezoidal Enclosures Based on Heatline Concept, Int. J. Heat Mass Transfer, vol. 52, pp. 2471–2483, 2009.
  • C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. Choi, Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement, Appl. Phys. Lett., vol. 87, p. 153107-1-3, 2005.
  • G. De Vahl Davis, Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution, Int. J. Numer. Methods Fluids, vol. 3, pp. 249–264, 1983.
  • H. Dixit and V. Babu, Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method, Int. J. Heat Mass Transfer, vol. 49, pp. 727–739, 2006.
  • F. H. Lai and Y. T. Yang, Lattice Boltzmann Simulation of Natural Convection Heat Transfer of Al2O3/Water Nanofluids in a Square Enclosure, Int. J. Therm. Sci., vol. 50, pp. 1930–1941, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.