Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 8
421
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Heat Transfer and Collector Efficiency through a Direct Absorption Solar Collector with Radiative Heat Flux Effect

, &
Pages 887-907 | Received 20 Feb 2014, Accepted 15 Jan 2015, Published online: 05 Jun 2015

REFERENCES

  • H. P. Garg and J. Prakash Solar Energy Fundamental and Applications, pp. 35, 46, 116, Tata McGraw-Hill Book Publishing Co., New Delhi, 1997.
  • A. R. Taylor, E. P. Phelan, P. T. Otanicar, A. C. Walker, M. Nguyen, S. Trimble, and P. Ravi Applicability of Nanofluids in High Flux Solar Collectors, Int. J. Renewable Sustainable Energy, vol. 3, p. 023104, 2011.
  • A. R. Taylor, E. P. Phelan, P. T. Otanicar, R. Adrian, and R. Prasher Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors, Nanoscale Res. Lett., vol. 6, p. 225, 2011.
  • S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep Nanofluids: Science and Technology, pp. 1–30, John Wiley & Sons, Inc., New Delhi, 2007.
  • V. Verma and L. Kundan Thermal Performance Evaluation of a Direct Absorption Flat Plate Solar Collector (DASC) Using Al2O3-H2O Based Nanofluids, IOSR J. Mech. Civil Eng., vol. 6, no. 2, pp. 29–35, 2013.
  • H. Tyagi, P. Phelan, and R. Prasher Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector, J. Sol. Energy Eng., vol. 131, no. 4, 041004, 2009.
  • T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor Nanofluid-Based Direct Absorption Solar Collector, J. Renewable Sustainable Energy, vol. 2, p. 033102, 2010.
  • O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises A Review of the Applications of Nanofluids in Solar Energy, Int. J. Heat Mass Transfer, vol. 57, pp. 582–594, 2013.
  • E. Zambolin Theoretical and Experimental Study of Solar Thermal Collector Systems and Components, Scuola di Dottorato di Ricerca in Ingegneria Industriale, Indirizzo Fisica Tecnica, 2011.
  • R. Nasrin, M. A. Alim, and A. J. Chamkha Effects of Physical Parameters on Natural Convection in a Solar Collector Filled With Nanofluid, Heat Transfer Asian Res., vol. 42, no. 1, pp. 73–88, 2013.
  • R. Nasrin and M. A. Alim Semi-Empirical Relation for Forced Convective Analysis Through a Solar Collector, Sol. Energy, vol. 105, pp. 455–467, 2014.
  • F. Struckmann Analysis of a Flat-Plate Solar Collector, Project Rept. MVK160 Heat and Mass Transport, Lund, Sweden, 2008.
  • R. H. Martín, A. G. Pinar, and J. P. García Experimental Heat Transfer Research in Enhanced Flat-Plate Solar Collectors, in Sol. Therm. Appl. World Renewable Energy Congr., Linköping, Sweden, pp. 3844–3851, 2011.
  • Y. Piao, E. G. Hauptmann, and M. Iqbal Forced Convective Heat Transfer in Cross-Corrugated Solar Air Heaters, ASME J. Sol. Energy Eng., vol. 116, pp. 212–214, 1994.
  • A. Álvarez, M. C. Muñiz, L. M. Varela, and O. Cabeza Finite Element Modelling of a Solar Collector, in Int. Conf. Renew. Energies and Power Quality, Granada, Spain, 2010.
  • E. Natarajan, and R. Sathish Role of Nanofluids in Solar Water Heater, Int. J. Adv. Manuf. Technol., vol. 45, 5 p., 2009. doi:10.1007/s00170-008-1876-8.
  • A. Bejan A Study of Entropy Generation in Fundamental Convective Heat Transfer, J. Heat Transfer Trans. ASME, vol. 101, pp. 718–725, 1979.
  • A. Bejan Entropy Generation through Heat and Fluid Flow, Wiley, New York, 1982.
  • A. Bejan Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes, CRC Press, Boca Raton, FL, 1996.
  • H. Khorasanizadeh, M. Nikfar, and J. Amani Entropy Generation of Cu–Water Nanofluid Mixed Convection in a Cavity, Eur. J. Mech. B Fluid, vol. 37, pp. 143–152, 2013.
  • S. A. Kalogirou Solar Thermal Collectors and Applications, Prog. Energy Combust. Sci., vol. 30, pp. 231–295, 2004.
  • E. Mohseni-Languri, H. Taherian, R. Masoodi, and J. R. Reisel An Energy and Exergy Study of a Solar Thermal Air Collector, Therm. Sci., vol. 13, no. 1, pp. 205–216, 2009.
  • K. Hooman, A. Ejlali, and F. Hooman Entropy Generation Analysis of Thermally Developing Forced Convection in Fluid-Saturated Porous Medium, Appl. Math. Mech. English Ed., vol. 29, no. 2, pp. 229–237, 2008.
  • M. A. Delavar and M. Hedayatpour Forced Convection and Entropy Generation Inside a Channel With a Heat-Generating Porous Block, Heat Transfer Asian Res., vol. 41, no. 7, pp. 580–600, 2012.
  • M. Shahi, A. H. Mahmoudi, and A. H. Raouf Entropy Generation Due to Natural Convection Cooling of a Nanofluid, Int. Commun. Heat Mass Transfer, vol. 38, pp. 972–983, 2011.
  • M. Esmaeilpour and M. Abdollahzadeh Free Convection and Entropy Generation of Nanofluid Inside an Enclosure With Different Patterns of Vertical Wavy Walls, Int. J. Therm. Sci., vol. 52, pp. 127–136, 2012.
  • C. C. Cho, C. L. Chen, and C. K. Chen Natural Convection Heat Transfer and Entropy Generation in Wavy-Wall Enclosure Containing Water-Based Nanofluid, Int. J. Heat Mass Transfer, vol. 61, pp. 749–758, 2012.
  • S. Parvin, R. Nasrin, and M. A. Alim Heat Transfer and Entropy Generation Through Nanofluid Filled Direct Absorption Solar Collector, Int. J. Heat Mass Transfer, vol. 71, pp. 386–395, 2014.
  • A. L. M. Morega and A. Bejan Heatline Visualization of Forced Convection Laminar Boundary Layers, Int. J. Heat Mass Transfer, vol. 36, no. 16, pp. 3957–3966, 1993.
  • R. Anandalakshmi, R. S. Kaluri, and T. Basak Heatline Based Thermal Management for Natural Convection Within Right-Angled Porous Triangular Enclosures With Various Thermal Conditions of Walls, Energy, vol. 36, pp. 4879–4896, 2011.
  • T. Basak, G. Aravind, S. Roy, and A. R. Balakrishnan Heatline Analysis of Heat Recovery and Thermal Transport in Materials Confined Within Triangular Cavities, Int. J. Heat Mass Transfer, vol. 53, pp. 3615–3628, 2010.
  • M. F. Modest Radiative Heat Transfer, 3rd ed., pp. 15–27, Academic Press, The Netherland, 2013.
  • M. Khoukhi, S. Maruyama, S. Sakai, and M. Behnia Combined Non-Gray Radiative and Conductive Heat Transfer in Solar Collector Glass Cover, Sol. Energy, vol. 75, no. 4, pp. 285–293, 2003.
  • S. Sivaiah, G. Murali, M. C. K. Reddy, and R. S. Raju Unsteady MHD Mixed Convection Flow Past a Vertical Porous Plate in Presence of Radiation, Int. J. Basic Appl. Sci., vol. 1, no. 4, pp. 651–666, 2012.
  • M. G. Reddy and N. B. Reddy Radiation and Mass Transfer Effects on Unsteady MHD Free Convection Flow Past a Vertical Porous Plate With Viscous Dissipation, Int. J. Appl. Math. Mech., vol. 6, no. 6, pp. 96–110, 2010.
  • C. F. Bohren and D. R. Huffman Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
  • B. C. Pak and Y. Cho Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particle, Exp. Heat Transfer, vol. 11, pp. 151–170, 1998.
  • J. C. Maxwell-Garnett Colours in Metal Glasses and in Metallic Films, Philos. Trans. R. Soc. A, vol. 203, pp. 385–420, 1904.
  • C. Taylor and P. Hood A Numerical Solution of the Navier-Stokes Equations Using Finite Element Technique, Comput. Fluids, vol. 1, pp. 73–89, 1973.
  • P. Dechaumphai Finite Element Method in Engineering, 2nd ed., Chulalongkorn University Press, Bangkok, 1999.
  • J. N. Reddy and D. K. Gartling The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Boca Raton, FL, 1994.
  • E. B. Ogut Natural Convection of Water-Based Nanofluids in an Inclined Enclosure With a Heat Source, Int. J. Therm. Sci., vol. 48, no. 11, pp. 2063–2073, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.