Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 1
314
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation on blade leading edge high-efficiency swirl and impingement phase transfer cooling mechanism

, , , &
Pages 67-84 | Received 24 Jan 2015, Accepted 17 Apr 2015, Published online: 23 Sep 2015

References

  • K. Homayoon, S. Mehrzad, and E. Reza, Numerical Modeling of Film Cooling With and Without Mist Injection, Heat Mass Transfer, vol. 45, pp. 727–741, 2009.
  • N. V. Nirmalan, J. A. Weaver, and L. D. Hylton, An Experimental Study of Turbine Vane Heat Transfer with Water-Air Cooling, ASME J. Turbomach., vol. 120, pp. 50–62, 1998.
  • J. P. C. W. Ling, P. T. Ireland, and N. W. Harvey, Measurement of Heat Transfer Coefficient Distributions, and Flow Field in a Model of a Turbine Blade Cooling Passage with Tangential Injection, Proc. of ASME Turbo Expo, Barcelona, Spain, 2006.
  • Y. T. Jiang, Q. Zheng, and G. Q. Yue, et al., Numerical Investigation of Swirl Cooling Heat Transfer Enhancement on Blade Leading Edge by Adding Water Mist, Proc. ASME Turbo Expo, Dusseldorf, Germany, 2014.
  • F. Kreith and D. Margolis, Heat Transfer and Friction in Turbulent Vortex Flow, Appl. Sci. Res., vol. 8, pp. 457–473, 1959.
  • N. Hay and P. D. West, Heat Transfer in Free Swirling Flow in a Pipe, ASME J. Heat Transfer, vol. 97, pp. 411–416, 1975.
  • P. M. Ligrani, C. R. Hedlund, and B. T. Babinchak, et al., Flow Phenomena in Swirl Chambers, Exp. Fluids, vol. 24, pp. 254–264, 1998.
  • C. R. Hedlund, P. M. Ligrani, and H. K. Moon, Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling, ASME J. Turbomach., vol. 121, pp. 804–813, 1999.
  • C. R. Hedlund, P. M. Ligrani, and B. Glezer, et al., Heat Transfer in a Swirl Chamber at Different Temperature Ratios and Reynolds Numbers, Int. J. Heat Mass Transfer, vol. 42, pp. 4081–4091, 1999.
  • C. R. Hedlund and P. M. Ligrani, Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers, ASME J. Turbomach., vol. 122, pp. 375–385, 2000.
  • B. Glezer, H. K. Moon, and J. Kerrebrock, Heat Transfer in a Rotating Radial Channel with Swirling Internal Flow, ASME 43rd Int. Gas Turbine and Aeroengine Congr. and Exposition, Stockholm, Sweden, 1998.
  • B. Glezer, T. Lin, and H. K. Moon, An Improved Turbine Cooling System, U.S. Patent No. 5603606, 1997.
  • Z. Liu, Z. P. Feng, and L. M. Song, Numerical Study on Flow, and Heat Transfer Characteristics of Swirl Cooling on Leading Edge Model of Gas Turbine Blade, Proc. ASME Turbo Expo, British Columbia, Canada, 2011.
  • Z. Liu, J. Li, and Z. P. Feng, Numerical Study on the Effect of Jet Slot Height on Flow, and Heat Transfer of Swirl Cooling in Leading Edge Model for Gas Turbine Blade, Proc. ASME Turbo Expo, San Antonio, Texas, USA, 2013.
  • K. Kusterer, G. Lin, and D. Bohn, et al., Heat Transfer Enhancement for Gas Turbine Internal Cooling by Application of Double Swirl Cooling Chambers, Proc. ASME Turbo Expo, San Antonio, Texas, USA, 2013.
  • R. E. Chupp, H. E. Helms, and P. W. Mcfadden, Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils, J. Aircraft, vol. 6, pp. 203–208, 1969.
  • R. S. Bunker and D. E. Metzger, Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I-Impingement Cooling without Film Coolant Extraction, ASME J. Turbomach., vol. 112, pp. 451–458, 1990.
  • C. Gau and C. M. Chung, Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process, ASME J. Heat Transfer, vol. 113, pp. 858–864, 1991.
  • G. Yang, M. Choi, and J. S. Lee, An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature, Int. J. Heat Mass Transfer, vol. 42, pp. 2199–2209, 1999.
  • D. H. Lee, Y. S. Chung, and S. Y. Won, The Effect of Concave Surface Curvature on Heat Transfer from a Fully Developed Round Impinging Jet, Int. J. Heat Mass Transfer, vol. 42, pp. 2489–2497, 1999.
  • M. E. Taslim and A. Khanicheh, Experimental and Numerical Study of Impingement on an Airfoil Leading-Edge with and without Showerhead and Gill Film Holes, ASME J. Turbomach., vol. 128, pp. 310–320, 2006.
  • M. E. Taslim and D. Bethka, Experimental, and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel with Cross-Flow, ASME J. Turbomach., vol. 131, pp. 011021/1–7, 2008.
  • R. Jia, M. Rokni, and B. Sunden, Numerical Assessment of Different Turbulence Models for Slot Jet Impinging on Flat, and Concave Surfaces, Proc. ASME Turbo Expo, Amsterdam, Netherlands, 2002.
  • X. Li, T. Gaddis, and T. Wang, Mist/steam Heat Transfer of Confined Slot Jet Impingement, ASME J. Turbomach., vol. 123, pp. 161–167, 2001.
  • X. Li, J. L. Gaddis, and T. Wang, Mist/steam Heat Transfer with Jet Impingement onto a Concave Surface, ASME J. Heat Transfer, vol. 125, pp. 438–446, 2003.
  • X. Li, J. L. Gaddis, and T. Wang, Mist/steam Cooling by a Row of Impinging Jets, Int. J. Heat Mass Transfer, vol. 46, pp. 2279–2290, 2003.
  • T. Wang, J. L. Gaddis, and X. Li, Mist/Steam Heat Transfer of Multiple Rows of Impinging Jets, Int. J. Heat Mass Transfer, vol. 48, pp. 5179–5191, 2005.
  • T. Wang and T. S. Dhanasekaran, Calibration of a Computational Model to Predict Mist/Steam Impinging Jets Cooling with an Application to Gas Turbine Blades, ASME J. Heat Transfer, vol. 132, pp. 122201/1–11, 2010.
  • T. Wang and T. S. Dhanasekaran, Model Verification of Mist/Steam Cooling with Jet Impingement onto a Concave Surface, and Prediction at Elevated Operating Conditions, ASME J. Heat Transfer, vol. 132, pp. 021016/1–11, 2012.
  • X. M. Tan, J. Z. Zhang, and B. Liu, et al., Experimental Investigation on Heat Transfer Enhancement of Mist/Air Impingement Jet, Sci. China Technol Sci., vol. 56, pp. 2456–2464, 2013.
  • X. M. Tan, Y. F. Li, and J. Z. Zhang, Numerical Simulation of Mist/Air Cooling in a Single Slot Jet Impingement, J. Aerosp. Power, vol. 28, pp. 129–135, 2013.
  • H. Shokouhmand, M. M. Heyhat, and A. Ahmadzadegan, Buoyancy Effects on a Mist/Air Impingement Jet, Proc. the World Congr. Eng., London, UK, 2008.
  • G. W. Liu, B. Xue, and L. Peng, et al., Numerical Investigation on Difference Between Blade Leading Edge Vortex and Normal Impingement Cooling, J. Propul. Technol., vol. 32, pp. 576–581, 2011.
  • M. C. Luo, Q. Zheng, and L. X. Sun, et al., The Influence of Inlet Fogging for the Stable Range in a Transonic Compressor Stage, J. Eng. Gas Turbine Power, vol. 134, pp. 022002/1–11, 2012.
  • L. X. Sun, Q. Zheng, and M. C. Luo, et al., On the Behavior of Water Droplets When Moving onto Blade Surface in a Wet Compression Transonic Compressor, J. Eng. Gas Turbine Power, vol. 133, pp. 082001/1–10, 2011.
  • AEA Technology, ANSYS CFX User Documentation, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.