Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 1
445
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Are “2D DNS” results of turbulent fuel/air mixing layers useful for assessing subgrid-scale models?

&
Pages 1-13 | Received 02 Feb 2015, Accepted 17 Apr 2015, Published online: 23 Sep 2015

References

  • S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
  • P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers, Oxford University Press, Oxford, 2004.
  • M. M. Ameen and J. Abraham, Evaluation of Scalar Dissipation Rate Sub-Models for Modeling Unsteady Reacting Diesel Jets, Chem. Eng. Sci., vol. 127, pp. 334–343, 2015.
  • P. J. M. Ferrer, G. Lehnasch, and A. Mura, Direct Numerical Simulations of High Speed Reactive Mixing Layers, J. Phys. Conf. Ser., vol. 35, pp. 012004, 2012.
  • S. Mukhopadhyay and J. Abraham, Evaluation of an Unsteady Flamelet Progress Variable Model for Autoignition and Flame Development in Compositionally Stratified Mixtures, Phys. Fluids, vol. 24, pp. 075115, 2012.
  • J. A. van Oijen, R. J. M. Bastiaans, and L. P. H. de Goey, Low-dimensional Manifolds in Direct Numerical Simulations of Premixed Turbulent Flames, Proc. Combust. Inst., vol. 31, pp. 1377–1384, 2007.
  • E. Mastorakos, T. A. Baritaud, and T. J. Poinsot, Numerical Simulations of Autoignition in Turbulent Mixing Flows, Combust. Flame, vol. 109, pp. 198–223, 1997.
  • E. Mastorakos and R. W. Bilger, Second-Order Conditional Moment Closure for the Autoignition of Turbulent Flows, Phys. Fluids, vol. 10, pp. 1246, 1998.
  • J. A. van Oijen, Direct Numerical Simulation of Autoigniting Mixing Layers in MILD Combustion, Proc. Combust. Inst., vol. 34, pp. 1163–1171, 2013.
  • S. Sreedhara and K. N. Lakshmisha, Autoignition in a Non-Premixed Medium: DNS Studies on the Effects of Three-Dimensional Turbulence, Proc. Combust. Inst., vol. 29, pp. 2051–2059, 2002.
  • J. H. Chen, Petascale Direct Numerical Simulation of Turbulent Combustion—Fundamental Insights Towards Predictive Models, Proc. Combust. Inst., vol. 33, pp. 99–123, 2011.
  • C. S. Yoo, Z. Luo, T. Lu, H. Kim, and J. H. Chen, A DNS Study of Ignition Characteristics of a Lean Iso-Octane/Air Mixture Under HCCI and SACI Conditions, Proc. Combust. Inst., vol. 34, pp. 2985–2993, 2013.
  • C. S. Yoo, E. S. Richardson, R. Sankaran, and J. H. Chen, A DNS Study on the Stabilization Mechanism of a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow, Proc. Combust. Inst., vol. 33, pp. 1619–1627, 2011.
  • N. Swaminathan and R. W. Bilger, Direct Numerical Simulation of Turbulent Nonpremixed Hydrocarbon Reaction Zones Using a Two-Step Reduced Mechanism, Combust. Sci. Technol., vol. 127, pp. 167–196, 1997.
  • P. Sripakagorn, S. Mitarai, G. Kosaly, and H. Pitsch, Extinction and Reignition in a Diffusion Flame: A Direct Numerical Simulation Study, J. Fluid Mech., vol. 518, pp. 231–259, 2004.
  • S. K. Lele, Compact Finite Difference Schemes with Spectral-Like Resolution, J. Comput. Phys., vol. 103, pp. 16–42, 1992.
  • T. J. Poinsot and S. K. Lele, Boundary Conditions for Direct Simulations of Compressible Viscous Flows, J. Comput. Phys., vol. 101, pp. 104–129, 1992.
  • J. W. Anders, V. Magi, and J. Abraham, Large-Eddy Simulation in the Near-Field of a Transient Multi-Component Gas Jet With Density Gradients, Comput. Fluids, vol. 36, pp. 1609–1620, 2007.
  • R. Venugopal and J. Abraham, A 2-D DNS Investigation of Extinction and Reignition Dynamics in Nonpremixed Flame-Vortex Interactions, Combust. Flame, vol. 153, pp. 442–464, 2008.
  • S. Mukhopadhyay and J. Abraham, Influence of Compositional Stratification on Autoignition in n-Heptane/Air Mixtures, Combust. Flame, vol. 158, pp. 1064–1075, 2011.
  • M. Fathali, M. Klein, T. Broeckhoven, C. Lacor, and M. Baelmans, Generation of Turbulent Inflow and Initial Conditions Based on Multi-Correlated Random Fields, Int. J. Numer. Methods Fluids, vol. 57, pp. 93–117, 2008.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
  • H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, 1972.
  • C. Rosales and C. Meneveau, Linear Forcing in Numerical Simulations of Isotropic Turbulence: Physical Space Implementations and Convergence Properties, Phys. Fluids, vol. 17, pp. 095106, 2005.
  • P. Moin, K. Squires, W. Cabot, and S. Lee, A Dynamic Subgrid‐Scale Model for Compressible Turbulence and Scalar Transport, Phys. Fluids A, vol. 3, pp. 2746, 1991.
  • S. Ghosal and P. Moin, The Basic Equations for the Large Eddy Simulation of Turbulent Flows in Complex Geometry, J. Comput. Phys., vol. 118, pp. 24–37, 1995.
  • V. M. Canuto and Y. Cheng, Determination of the Smagorinsky–Lilly Constant CS, Phys. Fluids, vol. 9, pp. 1368, 1997.
  • H. Pitsch, M. Chen, and N. Peters, Unsteady Flamelet Modeling of Turbulent Hydrogen-Air Diffusion Flames, 27th Symp. (Int.) Combust., vol. 27, pp. 1057–1064, 1998.
  • C. D. Pierce and P. Moin, Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion, J. Fluid Mech., vol. 504, pp. 73–97, 2004.
  • M. Ihme, C. M. Cha, and H. Pitsch, Prediction of Local Extinction and Re-Ignition Effects in Non-Premixed Turbulent Combustion using a Flamelet/Progress Variable Approach, Proc. Combust. Inst., vol. 30, pp. 793–800, 2005.
  • M. Ihme and H. Pitsch, Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model, Combust. Flame, vol. 155, pp. 70–89, 2008.
  • M. Ihme and Y. C. See, Prediction of Autoignition in a Lifted Methane/Air Flame Using an Unsteady Flamelet/Progress Variable Model, Combust. Flame, vol. 157, pp. 1850–1862, 2010.
  • S. S. Girimaji and Y. Zhou, Analysis and Modeling of Subgrid Scalar Mixing using Numerical Data, Phys. Fluids, vol. 8, pp. 1224, 1996.
  • J. P. H. Sanders and I. Gökalp, Scalar Dissipation Rate Modelling in Variable Density Turbulent Axisymmetric Jets and Diffusion Flames, Phys. Fluids, vol. 10, pp. 938, 1998.
  • G. Balarac, H. Pitsch, and V. Raman, Development of a Dynamic Model for the Subfilter Scalar Variance using the Concept of Optimal Estimators, Phys. Fluids, vol. 20, pp. 035114, 2008.
  • H. Schmidt and U. Schumann, Coherent Structure of the Convective Boundary Layer Derived From Large-Eddy Simulations, J. Fluid Mech., vol. 200, pp. 511–562, 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.