Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 2
190
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Comparative study of thermal radiation properties models in turbulent non-premixed sooting combustion

, &
Pages 166-179 | Received 03 Dec 2014, Accepted 17 Apr 2015, Published online: 23 Sep 2015

References

  • C. T. Hsieh, M. J. Huang, S. T. Lee, and C. H. Wang, A Numerical Study of Skid Marks on the Slabs in a Walking-beam Type Slab Reheating Furnace, Numer. Heat Transfer, Part A: Appl., vol. 57, no. 1, pp. 1–14, 2010.
  • D. Poitou, J. Amaya, and F. Duchaine, Parallel Computation for Radiative Heat Transfer using the DOM in Combustion Applications: Direction, Frequency, Subdomain Decomposition and Hybrid Methods, Numer. Heat Transfer, Part B: Fundam., vol. 62, no. 1, pp. 28–49, 2012.
  • M. Modest, Radiative Heat Transfer, 3rd ed., Academic Press, Oxford, 2013.
  • G. H. Yeoh and K. K. Yuen, Computational Fluid Dynamics in Fire Engineering – Theory, Modeling and Practice, 1st ed., Academic Press, Oxford, 2009.
  • J. H. Jeans, The Equations of Radiative Transfer of Energy, Monthly Notices Royal Astronomical Society, vol. 78, pp. 28–36, 1917.
  • S. Chandrasekhar, Radiative Transfer, 1st ed., Dover Publications, New York, 1960.
  • A. Mossi, M. M. Galarça, R. Brittes, H. A. Vielmo, and F. H. R. França, Comparison of Spectral Models in the Computation of Radiative Heat Transfer in Participating Media composed of Gases, and Soot, J. the Brazilian Soc. of Mech. Sci. & Eng., vol. 34, no. 2, pp. 112–119, 2012.
  • M. N. Osizik, Radiative Transfer and Interactions with Conduction and Convection, 1st ed., Wiley, New York, 1974.
  • W. L. Grosshandler, Radcal: A Narrow-Band Model for Radiation Calculations in a Combustion Environment. NIST Technical Report 1402, National Institute of Standards and Technology, Washington, 1993.
  • A. Soufiani and J. Taine, High Temperature Gas Radiative Property Parameters of Statistical Narrow-Band Model for H2O, CO2 and CO, and k-Correlated Model for H2O and CO2, Int. J. Heat Mass Transfer, vol. 40, no. 4, pp. 987–991, 1997.
  • R. Dobbins, G. Mulhohand, and N. Bryner, Comparison of a Fractal Smoke Optics Model with Light Extinction Measurements, Atmos. Environ., vol. 28, no. 5, pp. 889–897, 1994.
  • A. Przybylski, On the Mean Absorption Coefficient in the Computation of Model Stellar Atmospheres of Solar Type Stars, R. Astron. Soc., vol. 120, no. 1, pp. 1–21, 1960.
  • S. S. Sazhin, An Approximation for the Absorption Coefficient of Soot in a Radiating Gas, Manuscript. Fluent Europe Ltd., 1994.
  • T. F. Smith, Z. F. Shen, and J. N. Friedman, Evaluation of Coefficients for the Weighted Sum of Gray Gases Model, J. Heat Transfer, vol. 104, no. 4, pp. 602–608, 1982.
  • S. J. Brookes and J. B. Moss, Predictions of Soot and Thermal Radiation Properties in Confined Jet Diffusion Flames, Combust. Flame, vol. 116, pp. 486–503, 1999.
  • H. C. Hottel and A. F. Sarofim, Radiative Transfer, 1st ed., Mc Graw Hill, New York, 1967.
  • H. Chang and T. Charalampopoulos, Determination of the Wavelength Dependence of Refractive Indices of Flame Soot, Proc. R. Soc. London, vol. 430, pp. 577–591, 1990.
  • N. E. Endrud Soot, Radiation, a Pollutant Emissions in Oxygen-Enriched Turbulent Jet Flames, MSc. Thesis, The Pennsylvania State University, Pennsylvania, Pennsylvania, 2000.
  • T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, A New k − ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows, Comput. & Fluids, vol. 24, no. 3, pp. 227–238, 1995.
  • N. Peters, Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion, Prog. Energy Combust. Sci., vol. 10, no. 3, pp. 319–339, 1984.
  • G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, and V. V. Z. Lissianki, Gri-Mech 3.0, Gas Research Institute, 1999.
  • E. M. Orbegoso, L. F. Figueira da Silva, and A. R. Novgorodcev Jr., On The Predictability of Chemical Kinetics for the Description of the Combustion of Simple Fuels, J. Brazilian Soc. of Mech. Sci. & Eng., vol. 33, no. 4, pp. 492–505, 2011.
  • L. Wang, N. E. Endrud, S. R. Turns, M. D. D’agostini, and A. G. Slavejkov, A Study of the Influence of Oxygen Index on Soot, Radiation, and Emission Characteristics of Turbulent Jet Flames, Combust. Sci. Technol., vol. 174, no. 8, pp. 45–72, 2002.
  • L. Wang, Detailed Chemistry, Soot, and Radiation Calculations in Turbulent Reacting Flows, Ph.D. Thesis, The Pennsylvania State University, Pennsylvania, Pennsylvania, 2004.
  • L. Wang, D. C. Harworth, S. R. Turns, and M. F. Modest, Interactions Among Soot Thermal Radiation, and NOx Emissions in Oxygen-Enriched Turbulent Non-Premixed Flames: A Computational Fluids Dynamics Modeling Study, Combust. Flame, vol. 141, no. 1–2, pp 170–179, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.