Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 2
453
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional numerical study of the laminar flow and heat transfer in a wavy-finned heat sink filled with Al2O3/ethylene glycol-water nanofluid

, , &
Pages 195-208 | Received 20 Nov 2014, Accepted 17 Apr 2015, Published online: 23 Sep 2015

References

  • T. Rush, T. Newell, and A. Jacobi, An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages, Int. J. Heat Mass Transfer, vol. 42, no. 9, pp. 1541–1553, 1999.
  • C. C. Wang and C. K. Chen, Forced Convection in a Wavy-Wall Channel, Int. J. Heat Mass Transfer, vol. 45, no. 12, pp. 2587–2595, 2002.
  • J. Zhang, J. Kundu, and R. M. Manglik, Effect of Fin Waviness and Spacing on the Lateral Vortex Structure and Laminar Heat Transfer in Wavy-Plate-Fin Cores, Int. J. Heat Mass Transfer, vol. 47, no. 8, pp. 1719–1730, 2004.
  • H. M. Metwally and R. M. Manglik, Enhanced Heat Transfer Due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels, Int. J. Heat Mass Transfer, vol. 47, no. 10–11, pp. 2283–2292, 2004.
  • R. M. Manglik, J. H. Zhang, and A. Muley, Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects, Int. J. Heat Mass Transfer, vol. 48, no. 8, pp. 1439–1449, 2005.
  • M. Lorenzini, G. Fabbri, and S. Salvigni, Performance Evaluation of a Wavy-Fin Heat Sink for Power Electronics, Appl. Therm. Eng., vol. 27, no. 5–6, pp. 969–975, 2007.
  • K. K. Sikka, K. E. Torrance, C. U. Scholler, and P. I. Salanova, Heat Sinks with Fluted and Wavy Plate Fins in Natural and Low-Velocity Forced Convection, IEEE Trans. Components Pkg., vol. 25, no. 2, pp. 283–292, 2002.
  • H. Mohammed, P. Gunnasegaran, and N. Shuaib, Influence of Channel Shape on the Thermal and Hydraulic Performance of Microchannel Heat Sink, Int. Comm. Heat Mass Transfer, vol. 38, no. 4, pp. 474–480, 2011.
  • L. Gong, K. Kota, W. Q. Tao, and Y. Joshi, Thermal Performance of Microchannels with Wavy Walls for Electronics Cooling, IEEE Trans. Comp. Pack. Man., vol. 1, no. 7, pp. 1029–1035, 2011.
  • G. Xie, Z. Chen, B. Sunden, and W. Zhang, Comparative Study of the Flow and Thermal Performance of Liquid-Cooling Parallel-Flow and Counter-Flow Double-Layer Wavy Microchannel Heat Sinks, Numer. Heat Transfer A, vol. 64, no. 1, pp. 30–55, 2013.
  • Y. Sui, C. J. Teo, P. S. Lee, Y. T. Chew, and C. Shu, Fluid Flow and Heat Transfer in Wavy Microchannels, Int. J. Heat Mass Transfer, vol. 53, no. 13–14, pp. 2760–2772, 2010.
  • H. A. Mohammed, P. Gunnasegaran, and N. H. Shuaib, Numerical Simulation of Heat Transfer Enhancement in Wavy Microchannel Heat Sink, Int. Comm. Heat Mass Transfer, vol. 38, no. 1, pp. 63–68, 2011.
  • Y. Sui, P. S. Lee, and C. J. Teo, An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels with Rectangular Cross Section, Int. J. Therm. Sci., vol. 50, no. 12, pp. 2473–2482, 2011.
  • S. U. S. Choi, Developments and Applications of Non-Newtonian Flows, ASME FED, vol. 66, pp. 99–105, 1995.
  • S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transfer, vol. 121, no. 2, pp. 280–289, 1999.
  • X. Wang, X. Xu, and S. U. S. Choi, Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transfer, vol. 13, no. 4, pp. 474–480, 1999.
  • H. Xie, J. Wang, T. Xi, Y. Liu, and F. Ai, Dependence of the Thermal Conductivity of Nanoparticle-Fluid Mixture on the Base Fluid, J. Mater. Sci. Lett., vol. 21, no. 19, pp. 1469–1471, 2002.
  • E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, and J. V. Selinger, Thermal Conductivity, and Particle Agglomeration in Alumina Nanofluids: Experiment, and Theory, Phys. Rev. E, vol. 76, no. 6, 061203-1-061203-16, 2007.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001.
  • W. Yu, H. Q. Xie, Y. Li, L. F. Chen, and Q. Wang, Experimental Investigation on the Heat Transfer Properties of Al2O3 Nanofluids Using the Mixture of Ethylene Glycol and Water as Base Fluid, Powder Technol., vol. 230, pp. 14–19, 2012.
  • C. H. Li and G. P. Peterson, Experimental Investigation of Temperature, and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids), J. Appl. Phys., vol. 99, no. 8, 084314-1-084314-8, 2006.
  • D. Wen and Y. Ding, Formulation of Nanofluids for Natural Convective Heat Transfer Applications, Int. J. Heat Fluid Flow, vol. 26, no. 6, pp. 855–864, 2005.
  • D. H. Yoo, K. Hong, and H. S. Yang, Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids, Thermochim. Acta, vol. 455, no. 1, pp. 66–69, 2007.
  • J. H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. Choi, and C. J. Choi, Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles, Int. J. Heat Mass Transfer, vol. 51, no. 11, pp. 2651–2656, 2008.
  • S. D. Pandey and V. K. Nema, Experimental Analysis of Heat Transfer and Friction Factor of Nanofluid as a Coolant in a Corrugated Plate Heat Exchanger, Exp. Therm. Fluid Sci., vol. 38, pp. 248–256, 2012.
  • M. Khoshvaght-Aliabadi, A. Zamzamian, and F. Hormozi, Wavy Channel and Different Nanofluids Effects on Performance of Plate-Fin Heat Exchangers, J. Thermophys. Heat Transfer, vol. 28, no. 3, pp. 474–484, 2014.
  • M. Hejazian and M. K. Moraveji, A Comparative Analysis of Single and Two-Phase Models of Turbulent Convective Heat Transfer in a Tube for TiO2 Nanofluid with CFD, Numer. Heat Transfer, A, vol. 63, no. 10, pp. 795–806, 2013.
  • M. Manninen, V. Taivassalo, and S. Kallio, On the Mixture Model for Multiphase Flow, VTT Publications 288, Techincal Research Center of Finland, Espoo, Finland, 1996.
  • L. Schiller and A. Naumann, A Drag Coefficient Correlation, Z. Ver. Dtsch. Ing., vol. 77, no. 1, pp. 318–320, 1935.
  • R. S. Vajjha and D. K. Das, A Review, and Analysis on Influence of Temperature, and Concentration of Nanofluids on Thermophysical Properties, Heat Transfer and Pumping Power, Int. J. Heat Mass Transfer, vol. 55, no. 15–16, pp. 4063–4078, 2012.
  • B. C. Pak and Y. I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, vol. 11, no. 2, pp. 151–170, 1998.
  • Y. M. Xuan and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000.
  • R. S. Vajjha, Measurements of Thermophysical Properties of Nanofluids and Computation of Heat Transfer Characteristics, MS Thesis, Mech. Engineering Dept., University of Alaska Fairbanks, Fairbanks, AK, 2008.
  • J. Koo and C. Kleinstreuer, A New Thermal Conductivity Model for Nanofluids, J. Nanoparticle Res., vol. 6, pp. 577–588, 2004.
  • F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 1996.
  • Y. Sui, C. J. Teo, and P. S. Lee, Direct Numerical Simulation of Fluid Flow and Heat Transfer in Periodic Wavy Channels with Rectangular Cross-Sections, Int. J. Heat Mass Transfer, vol. 55, no. 1–3, pp. 73–88, 2012.
  • A. K. Saha and S. Acharya, Parametric Study of Unsteady Flow and Heat Transfer in a Pin-Fin Heat Exchanger, Int. J. Heat Mass Transfer, vol. 46, no. 20, pp. 3815–3830, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.