Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 2
478
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of six turbulence models for modeling and predicting narrow passage flows, part 1: Impingement jets

, , &
Pages 109-127 | Received 11 Mar 2015, Accepted 19 May 2015, Published online: 30 Nov 2015

References

  • R. S. Bunker, Gas Turbine Cooling: Moving from Macro to Micro Cooling, in ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Paper No. GT 2013–94277. American Society of Mechanical Engineers.
  • R. S. Bunker, Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges, J. Turbomach., vol. 129, no. 2, pp. 193–201, 2006.
  • R. S. Bunker, Innovative Gas Turbine Cooling Techniques, in R. Amano and B. Sunden (eds.), Thermal Engineering in Power Systems, Wessex Institute Technology Press, Southampton, Great Britain, 2008. ISBN 978-1-84564-062-0.
  • M. Angioletti, R. M. Di Tommaso, E. Nino, and G. Ruocco, Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets, Int. J. Heat Mass Transfer, vol. 46, no. 10, pp. 1703–1713, 2003.
  • C. Carcasci, An Experimental Investigation on Air Impinging Jets using Visualisation Methods, Int. J. Thermal Sci., vol. 38, no. 9, pp. 808–818, 1999.
  • E. Baydar and Y. Ozmen, An Experimental Investigation on Flow Structures of Confined and Unconfined Impinging Air Jets, Heat Mass Transfer, vol. 42, no. 4, pp. 338–346, 2006.
  • L. F. G. Geers, Multiple Impinging Jet Arrays: An Experimental Study on Flow and Heat Transfer, Ph.D. thesis, Delft University of Technology, TU Delft, 2004.
  • K. Jambunathan, E. Lai, M. A. Moss, and B. L. Button, A Review of Heat Transfer Data for Single Circular Jet Impingement, Int. J. Heat Fluid Flow, vol. 13, no. 2, pp. 106–115, 1992.
  • M. Goodro, J. Park, P. Ligrani, M. Fox, and H. K. Moon, Effect of Temperature Ratio on Jet Array Impingement Heat Transfer, J. Heat Transfer, vol. 131, no. 1, pp. 012201, 2009.
  • J. Lee, Z. Ren, J. Haegele, G. Potts, J. S. Jin, P. Ligrani, and H. K. Moon, Effects of Jet-to-target Plate Distance and Reynolds Number on Jet Array Impingement Heat Transfer, J. Turbomach., vol. 136, no. 5, pp. 051013, 2014.
  • S. Fechter, A. Terzis, P. Ott, B. Weigand, J. Von Wolfersdorf, and M. Cochet, Experimental and Numerical Investigation of Narrow Impingement Cooling Channels, Int. J. Heat Mass Transfer, vol. 67, pp. 1208–1219, 2013.
  • A. Terzis, G. Wagner, J. von Wolfersdorf, P. Ott, and B. Weigand, Hole Staggering Effect on the Cooling Performance of Narrow Impingement Channels using the Transient Liquid Crystal Technique, J. Heat Transfer, vol. 136, no. 7, pp. 071701, 2014.
  • S. Caliskan, S. Baskaya, and T. Calisir, Experimental and Numerical Investigation of Geometry Effects on Multiple Impinging Air Jets, Int. J. Heat Mass Transfer, vol. 75, pp. 685–703, 2014.
  • M. K. Isman, E. Pulat, A. B. Etemoglu, and M. Can, Numerical Investigation of Turbulent Impinging Jet Cooling of A Constant Heat Flux Surface, Numer. Heat Transfer, Part A Appl., vol. 53, no. 10, pp. 1109–1132, 2008.
  • T. H. Shih, J. Zhu, & J. L. Lumley, A New Reynolds Stress Algebraic Equation Model, Comput. Meth. Appl. Mech. Eng., vol. 125, no. 1, pp. 287–302, 1995.
  • H. M. Hofmann, R. Kaiser, M. Kind, and H. Martin, Calculations of Steady and Pulsating Impinging Jets—An Assessment of 13 Widely used Turbulence Models, Numer. Heat Transfer, Part B Fundam., vol. 51, no. 6, pp. 565–583, 2007.
  • M. A. R. Sharif and K. K. Mothe, Evaluation of Turbulence Models in the Prediction of Heat Transfer Due to Slot Jet Impingement on Plane and Concave Surfaces, Numer. Heat Transfer, Part B Fundam., vol. 55, no. 4, pp. 273–294, 2009.
  • N. Zuckerman and N. Lior, Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling, Adv. Heat Transfer, vol. 39, no. 6, pp. 565–631, 2006.
  • S. Kubacki and E. Dick, Hybrid RANS/LES of Flow and Heat Transfer in Round Impinging Jets, Int. J. Heat Fluid Flow, vol. 32, no. 3, pp. 631–651, 2011.
  • F. R. Menter, Two-equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994.
  • V. Yakhot and S. A. Orszag, Renormalization Group Analysis of Turbulence: I. Basic Theory, J. Sci. Comput., vol. 1, no. 1, pp. 3–51, 1986.
  • T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows, Comput. Fluids, vol. 24, no. 3, pp. 227–238, 1995.
  • S. Wallin and A. V. Johansson, An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows, J. Fluid Mech., vol. 403, pp. 89–132, 2000.
  • A. K. Hellsten, New Advanced k-ω Turbulence Model for High-Lift Aerodynamics, AIAA J., vol. 43, no. 9, pp. 1857–1869, 2005.
  • P. A. Durbin, Near-wall Turbulence Closure Modeling without “Damping Functions”, Theor. Comput. Fluid Dyn., vol. 3, no. 1, pp. 1–13, 1991.
  • M. Wolfshtein, The Velocity and Temperature Distribution in One-dimensional Flow with Turbulence Augmentation and Pressure Gradient, Int. J. Heat Mass Transfer, vol. 12, no. 3, pp. 301–318, 1969.
  • R. Gardon and J. C. Akfirat, Heat Transfer Characteristics of Impinging Two Dimensional Air Jets, J. Heat Transfer, vol. 88, no. 1, pp. 101–107, 1966.
  • L. W. Florschuetz, C. R. Truman, and D. E. Metzger, Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement with Crossflow, J. Heat Transfer, vol. 103, no. 2, pp. 337–342, 1981.
  • M. K. Chyu and S. C. Siw, Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils, J. Therm. Sci. Eng. Appl., vol. 5, no. 2, pp. 021008, 2013.
  • W. M. Kays, Turbulent Prandtl Number—Where Are We? J. Heat Transfer, vol. 116, no. 2, pp. 284–295, 1994.
  • M. Coussirat, J. Van Beeck, M. Mestres, E. Egusguiza, J. M. Buchlin, and X. Escaler, Computational Fluid Dynamics Modeling of Impinging Gas-jet Systems: I. Assessment of Eddy Viscosity Models, J. Fluids Eng., vol. 127, no. 4, pp. 691–703, 2005.
  • R. S. Bunker, J. C. Bailey, C. P. Lee, and C. W. Stevens, In-wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils, ASME Paper No. GT2004–54260, 2004.
  • D. Lytle and B. W. Webb, Air Jet Impingement Heat Transfer at Low Nozzle-plate Spacings, Int. J. Heat Mass Transfer, vol. 37, no. 12, pp. 1687–1697, 1994.
  • D. W. Colucci and R. Viskanta, Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet, Exp. Therm Fluid Sci., vol. 13, no. 1, pp. 71–80, 1996.
  • T. S. O’Donovan and D. B. Murray, Jet Impingement Heat Transfer–Part I: Mean and Root-mean-square Heat Transfer and Velocity Distributions, Int. J. Heat Mass Transfer, vol. 50, no. 17, pp. 3291–3301, 2007.
  • R. J. Goldstein, A. I. Behbahani, and K. K. Heppelmann, Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet, Int. J. Heat Mass Transfer, vol. 29, no. 8, pp. 1227–1235, 1986.
  • W. Li, L. Yang, J. Ren, and H. Jiang, Algebraic Anisotropic Eddy Viscosity Model for Separated Flows of Internal Cooling Channels, ASME Paper No. GT2014–25591, 2014.
  • Y. Chen, F. Arbeiter, and G. Schlindwein, A Comparative Study of Turbulence Models for Conjugate Heat Transfer to Gas Flow in a Heated Mini-channel, Numer. Heat Transfer, Part A Appl., vol. 61, no. 1, pp. 38–60, 2012.
  • E. Pulat, M. K. Isman, A. B. Etemoglu, and M. Can, Effect of Turbulence Models and Near-wall Modeling Approaches on Numerical Results in Impingement Heat Transfer, Numer. Heat Transfer, Part A Appl., vol. 60, no. 6, pp. 486–519, 2011.
  • L. Zhang and D. Che, Turbulence Models for Fluid Flow and Heat Transfer Between Cross-corrugated Plates, Numer. Heat Transfer, Part A Appl., vol. 60, no. 5, pp. 410–440, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.