Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 3
403
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

A new computational thermal model of the whole human body: Applications to patient warming blankets

, &
Pages 227-241 | Received 04 Apr 2015, Accepted 30 May 2015, Published online: 02 Dec 2015

References

  • S. Y. Lyin, H. T. Lai, and C. K. Chen, Hyperthermia Treatment for Living Tissue with Laser Heating Problems by the Differential Transformation Method, Num. Heat Transfer A, vol. 60, pp. 499–518, 2011.
  • W. Dai, H. Tu, and R. Nassar, A Fourth-Order Compact Finite-Difference Scheme for Solving a 1D Pennes Bioheat Transfer Equation in a Triple-Layered Skin Structure, Num. Heat Transfer B, vol. 46, pp. 447–461, 2004.
  • W. Dai, H. Wang, P. Jordan, R. E. Mickens, and A. Bejan, A Mathematical Model for Skin Burn Injury Induced by Radiation Heating, Int. J. Heat Mass Transfer, vol. 51, pp. 5497–5509, 2008.
  • R. V. Davalos and B. Rubinsky, Temperature Considerations During Irreversible Electroporation, Int. J. Heat Mass Transfer, vol. 51, pp. 5617–5622, 2008.
  • M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, Bio-Heat Transfer Analysis During Short Pulse Laser Irradiation of Tissues, Int. J. Heat Mass Transfer, vol. 51, pp. 5511–5521, 2008.
  • J. Sun, A. Zhang, and L. X. Xu, Evaluation of Alternate Cooling and Heating for Tumor Treatment, Int. J. Heat Mass Transfer, vol. 51, pp. 5478–5485, 2008.
  • H. Vu, O. Garcia-Valladares, and A. Aguilar, Vapor/Liquid Phase Interaction in Flare Flashing Sprays Used in Dermatologic Cooling, Int. J. Heat Mass Transfer, vol. 51, pp. 5721–5731, 2008.
  • Y. Wang, L. Zhu, and A. J. Rosengart, Targeted Brain Hypothermia Induced by an Interstitial Cooling Device in the Rat Neck: Experimental Study and Model Validation, Int. J. Heat Mass Transfer, vol. 51, pp. 5662–5670, 2008.
  • M. Shafahi and K Vafai, Human Eye Response to Thermal Disturbances, J. Heat Transfer, vol. 133, paper no. 011009, 2011.
  • S. Mahjoob and K. Vafai, Analytical Characterization and Production of an Isothermal Surface for Biological and Electronic Applications, J. Heat Transfer, vol. 131, pp. 1–12, 2009.
  • M. Iasiello, K. Vafai, A. Andreozzi, N. Bianco, and F. Tavakkoli, Effects of External and Internal Hyperthermia on LDL Transport and Accumulation Within an Arterial Wall in the Presence of a Stenosis, Ann. Biomed. Eng., vol. 43, pp. 1585–1599, 2015.
  • K. Wang, F. Tavakkoli, S. Wang, and K. Vafai, Analysis and Analytical Characterization of Bioheat Transfer During Radiofrequency Ablation, J. Biomech., vol. 13, pp. 930–940, 2015.
  • I. T. Im, S. B. Youn, and K. Kim, Numerical Study on the Temperature Profiles and Degree of Burns in Human Skin During Combined Thermal Therapy, Num. Heat Transfer A, vol. 67, pp. 921–933, 2015.
  • S. J. Beacher, E. M. Sparrow, J. M. Gorman, and J. P. Abraham, Theory and Numerical Simulation of Thermochemical Ablation, Num. Heat Transfer A, vol. 66, pp. 131–143, 2014.
  • E. M. Sparrow and J. P. Abraham, A Simulation of Gas-Based, Endometrial-Ablation Therapy for the Treatment of Menorrhagia, Ann. Biomed. Eng., vol. 36, pp. 171–183, 2008.
  • J. P. Abraham, E. M. Sparrow, and S. Ramadhyani, Numerical Simulation of a BPH Thermal Therapy – A Case Study Involving TUMT, J. Biomech. Eng., vol. 129, pp. 548–557, 2007.
  • N. N. Johnson, J. P. Abraham, Z. I. Helgeson, W. J. Minkowycz, and E. M. Sparrow, An Archive of Skin-Layer Thicknesses, and Properties, and Calculations of Scald Burns with Comparisons to Experimental Observations, J. Therm. Sci. Eng. Appl., vol. 3, paper no. 011003, 2011.
  • J. P. Abraham, M. P. Hennessey, and W. J. Minkowycz, A Simple Algebraic Model to Predict Burn Depth and Injury, Int. Commun. Heat Mass Transfer, vol. 38, pp. 1169–1171, 2011.
  • B. L. Viglianti, M. W. Dewhirst, J. M. Gorman, J. P. Abraham, and E. M. Sparrow, Rationalization of Thermal Injury Quantification Methods: Application to Skin Burns, Burns, vol. 40, pp. 896–902, 2014.
  • A. Bhowmik, R. Repaka, and S. C. Mishra, Thermal Analysis of the Increasing Subcutaneous Fat Thickness Within the Human Skin – A Numerical Study, Num. Heat Transfer A, vol. 67, pp. 313–329, 2015.
  • H. H. Pennes, Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, J. Appl. Physiol., vol. 1, pp. 93–122, 1948.
  • M. Fu, W. Weng, and H. Yuan, Numerical Simulation of the Effects of Blood Perfusion, Water Diffusion, and Vaporization on the Skin Temperature and Burn Injuries, Num. Heat Transfer A, vol. 65, pp. 1187–1203, 2014.
  • B. W. Raaymakers, A. N. T. J. Kotte, and J. J. W. Lagendijk, Discrete Vasculature (DIVA) Model Simulating the Thermal Impact of Individual Blood Vessels for In Vivo Heat Transfer, in Minkowycz, Sparrow and Abraham (eds.), Advances in Numerical Heat Transfer, vol. 3, Taylor and Francis, New York, NY, 2009.
  • L. Zhu, T. Schappeler, C. CorderoTumangday, and A. J. Rosengart, Thermal Interactions Between Blood and Tissue, in Minkowycz, Sparrow and Abraham (eds.), Advances in Numerical Heat Transfer, vol. 3, Taylor and Francis, New York, NY, 2009.
  • X. Zeng, W. Dai, and A. Bejan, Vascular Countercurrent Network for 3D Triple-Layered Skin Structure with Radiation Heating, Num. Heat Transfer A, vol. 57, pp. 369–391, 2010.
  • S. Mahjoob and K. Vafai, Analytical Characterization of Heat Transport through Biological Media Incorporating Hyperthermia Treatment, Int. J. Heat Mass Transfer, vol. 52, pp. 1608–1618, 2009.
  • A. R. A. Khaled and K. Vafai, The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues, Int. J. Heat Mass Transfer, vol. 46, pp. 4989–5003, 2003.
  • S. Mahjoob and K. Vafai, Analysis of Heat Transfer in Consecutive Variable Cross-Sectional Domains: Applications in Biological Media and Thermal Management, J. Heat Transfer, vol. 133, paper no. 011006, 2011.
  • J. W. Baish, K. Mukundakrishnan, and P. S. Ayyaswamy, Numerical Models of Blood Flow Effects in Biological Tissues, in Minkowycz, Sparrow and Abraham (eds.), Advances in Numerical Heat Transfer, vol. 3, Taylor and Francis, New York, NY, 2009.
  • J. Zhou and J. Liu, Numerical Study on 3D Light and Heat Transport in Biological Tissues Embedded with Large Blood Vessels During Laser-Induced Thermotherapy, Num. Heat Transfer A, vol. 45, pp. 415–449, 2004.
  • J. P. Abraham and E. M. Sparrow, A Thermal Ablation Model Including Liquid-to-Vapor Phase Change, Necrosis-Dependent Perfusion, and Moisture-Dependent Properties, Int. J. Heat Mass Transfer, vol. 50, pp. 2537–2544, 2007.
  • Z. S. Deng and J. Liu, Numerical Study of the Effects of Large Blood Vessels on Three-Dimensional Tissue Temperature Profiles During Cryosurgery, Num. Heat Transfer A, vol. 49, pp. 47–66, 2006.
  • Z. S. Deng and J. Liu, Monte Carlo Method to Solve Multidimensional Bioheat Transfer Problem, Num. Heat Transfer B, vol. 42, pp. 543–567, 2002.
  • Q. T. Pham, Finite Element Procedure for Heat Conduction Problems with Internal Heating, Num. Heat Transfer A, vol. 27, pp. 611–619, 2007.
  • B. Chen, Y. Gu, and Z. Guan, Nonlinear Transient Heat Conduction Analysis With Precise Time Integration Method, Num. Heat Transfer B, vol. 40, pp. 325–341, 2001.
  • F. Moukalled and M. S. Darwish, New Family of Adaptive Very High Resolution Schemes, Num. Heat Transfer B, vol. 4, pp. 215–239, 1998.
  • Y. N. Jeng and Z. S. Lee, Revisit to the Modified Multiple One-Dimensional Adaptive Grid Method, Num. Heat Transfer B, vol. 29, pp. 305–323, 1996.
  • T. Rhodes and S. Acharya, An Adaptive Differencing Scheme for Flow and Heat Transfer Problems, Num. Heat Transfer B, vol. 23, pp. 153–173, 1993.
  • E. Li, G. R. Liu, and V. Tan, Simulation of Hyperthermia Treatment Using the Edge-Based Smoothed Finite-Element Method, Num. Heat Transfer A, vol. 57, pp. 822–847, 2010.
  • Z. S. Deng and J. Liu, Numerical Simulation of 3D Freezing and Heating Problems for Combined Cryosurgery and Hyperthermia Therapy, Num. Heat Transfer A, vol. 46, pp. 587–611, 2004.
  • N. Afrin, J. Zhou, Y. Zhang, and D. Y. Tzou, Numerical Simulation of Thermal Damage to Living Biological Tissues Induced by Laser Irradiation Based on a Generalized Dual Phase Lag Model, Num. Heat Transfer A, vol. 61, pp. 483–501, 2012.
  • B. Bovahedian and B. Boroomand, Non-Fourier Heat Conduction Problems and the Use of Exponential Basis Functions, Num. Heat Transfer A, vol. 67, pp. 357–379, 2015.
  • K. C. Liu and C. T. Lin, Solution of an Inverse Heat Conduction Problem in a Bi-Layered Spherical Tissue, Num. Heat Transfer A, vol. 58, pp. 802–818, 2010.
  • K. Khanafer and K. Vafai, Synthesis of Mathematical Models Representing Bioheat Transport, in Minkowycz, Sparrow and Abraham (eds.), Advances in Numerical Heat Transfer, vol. 3, Taylor and Francis, New York, NY, 2009.
  • A. S. Franca and K. Haghighi, Adaptive Finite Element Analysis of Transient Thermal Problems, Num. Heat Transfer B, vol. 26, pp. 273–292, 1994.
  • C. F. Gonzalesz Fernandez, F. Alhama, and J. F. Lopez, Application of the Network Method to Heat Conduction Processes with Polynomial and Potential-Exponentially Varying Thermal Properties, Num. Heat Transfer A, vol. 33, pp. 549–559, 1998.
  • P. L. Ricketts, A. V. Mudaliar, B. E. Ellis, C. A. Pullins, L. A. Meyers, O. I. Lanz, E. P. Scott, and T. E. Diller Non-Invasive Blood Perfusion Measurements Using a Combined Temperature and Heat Flux Surface Probe, Int. J. Heat Mass Transfer, vol. 51, pp. 5740–5748, 2008.
  • E. H. Wissler, Steady-State Temperature Distribution in Man, J. Appl. Physiol., vol. 16, pp. 734–740, 1961.
  • E. H. Wissler, Whole-Body Human Thermal Models, in Minkowycz Sparrow and Abraham (eds.), Advances in Numerical Heat Transfer, vol. 3, CRC Press, Boca Raton, FL, pp. 257–306, 2009.
  • K. Khanafer and K. Vafai, Synthesis of Mathematical Models Representing Bioheat Transport, in Minkowycz, Sparrow and Abraham (eds.), Advances in Numerical Heat Transfer, vol. 3, CRC Press, Boca Raton, FL, pp. 257–306, 2009.
  • S. H. Xiang and J. Liu, Comprehensive Evaluation on the Heating Capacities of Four Typical Whole Body Hypothermia Strategies Via Compartmental Model, Int. J. Heat Mass Transfer, vol. 51, pp. 5486–5496, 2008.
  • R. J. Roselli and K. R. Diller KR, Biotransport: Principles and Applications, Springer, London, UK, 2011.
  • M. Al-Othmani, N. Ghaddar, and K. Ghali, A Multi-Segmented Human Bioheat Model for Transient and Asymmetric Radiative Environments, Int. J. Heat Mass Transfer, vol. 51, pp. 5522–5533, 2008.
  • H. T. Hammel, Regulation of Internal Body Temperature, Ann. Rev. Physiol., vol. 30, pp. 641–710, 1968.
  • R. Lenhardt, Monitoring and Thermal Management, Best Pract. Res. Clin. Anaesth., vol. 17, pp. 569–581, 2003.
  • S. R. Insler and D. I. Sessler, Perioperative Thermoregulation and Temperature Monitoring, Anesthesiol. Clin., vol. 24, pp. 823–837, 2006.
  • K. Nagashima, Central Mechanisms for Thermoregulation in a Hot Environment, Ind. Health, vol. 44, pp. 359–367, 2006.
  • J. Gonzalez-Alonso, Human Thermoregulation and the Cardiovascular System, Exp. Physiol., vol. 93, pp. 340–346, 2012.
  • J. H. Gibbon and E. M. Landis, Vasodilation in the Lower Extremities in Response to Immersing the Forearms in Warm Water, J. Clin. Invest., vol. 11, pp. 1019–1036, 1932.
  • N. E. Freeman, The Effect of Temperature on the Rate of Blood Flow in the Normal and in the Sympathectomized Hand, Am. J. Physiol., vol. 113, pp. 384–398, 1935.
  • E. Simon, W. Rautenberg, R. Thauer, and M. Iriki, Auslosuing Thermoregulatorischer Reaktionen Durch Locale Kulung im Vertebralkanal, Naturwissenschaften, vol. 50, pp. 337, 1963.
  • C. Jessen and E. T. Mayer, Spinal Cord and Hypothalamus as Core Sensors of Temperature in the Conscious Dog, I. Equivalence of Responses, Pflugers Arch., vol. 324, pp. 189–204, 1971.
  • C. Jessen and O. Ludwig, Spinal Cord and Hypothalamus as Core Sensors of Temperature in the Conscious Dog, II. Addition of Signals, Pflugers Arch., vol. 324, pp. 205–216, 1971.
  • C. Jessen and E. Simon, Spinal Cord and Hypothalamus as Core Sensors of Temperature in the Conscious Dog, III. Identity of Functions, Pflugers Arch., vol. 324, pp. 217–226, 1971.
  • J. R. S. Hales, A. A. Fawcett, J. W. Bennett, and A. D. Needham, Thermal Control of Blood Flow Through Capillaries and Arteriovensous Anastomoses in Skin of Sheep, Pflugers Arch., vol. 378, pp. 55–63, 1978.
  • D. Grahn, J. G. Brock-Utne, D. E. Watenpaugh, and H. C. Heller, Recovery from Mild Hypothermia Can Be Accelerated by Mechanically Distending Blood Vessels in the Hand, J. Appl. Physiol., vol. 85, pp. 1643–1648, 1998.
  • H. C. Heller and D. A. Grahn, Enhancing Thermal Exchange in Humans and Practical Applications, Disruptive Sci. Technol., vol. 1, pp. 11–19, 2012.
  • T. E. Wilson, R. Zhang, B. D. Levine, and C. G. Crandall, Dynamic Autoregulation of Cutaneous Circulation: Differential Control in Glabrous Versus Nonglabrous Skin, Am. J. Physiol.: Heart Circulat. Physiol., vol. 289, pp. H385–H391, 2005.
  • T. Matsukawa T, D. I. Sessler, A. I. Sessler, M. Schroeder, M. Ozaki, A. Kurz, and C. Cheng, Heat Flow and Distribution During Induction of General Anesthesia, Anesthesiology, vol. 82, pp. 662–673, 1995.
  • C. Barone, C. Pablo, and G. Barone, Postanesthetic Care in the Critical Care Unit, Crit. Care Nurse, vol. 24, pp. 38–45, 2004.
  • A. Taguchi, J. Ratnaraj, B. Kabon, N. Sharma, R. Lenhardt, D. I. Sessler, and A. Kurz, Effects of a Circulating-Water Garment and Forced-Air Warming on Body Heat Content and Core Temperature, Anesthesiology, vol. 100, pp. 1058–1064, 2004.
  • P. Kiekkas and M. Karga, Prewarming: Preventing Intraoperative Hypothermia, Br. J. Perioperative Nursing, vol. 15, pp. 444–445, 2005.
  • K. Good, J. Verble, J. Secrest, and B. Norwood, Postoperative Hypothermia – The Chilling Consequences, AORN J., vol. 83, pp. 1054–1066, 2006.
  • S. Cooper, The Effect of Preoperative Warming on Patients’ Postoperative Temperatures, AORN J., vol. 83, pp. 1073–1084, 2006.
  • J. Andrzejowski, J. Hoyle, G. Eapen, and D. Turnbull, Effect of Prewarming on Post-Induction Core Temperature and the Incidence of Inadvertent Perioperative Hypothermia in Patients Undergoing General Anaesthesia, Br. J. Anaesth., vol. 101, pp. 627–631, 2008.
  • T. Weirich, Hypothermia/Warming Protocols: Why are They not widely Used in the OR?, AORN J., vol. 87, pp. 333–344, 2008.
  • D. W. Hensley, A. E. Mark, J. R. Abella, G. M. Netscher, E. H. Wissler, and K. R. Diller, 50 Years of Computer Simulation of the Human Thermoregulatory System, J. Biomech. Eng., vol. 135, paper no. 021006, 2013.
  • J. B. Cain, S. D. Livingstone, R. W. Nolan, and A. A. Keefe, Respiratory Heat Loss During Work at Various Ambient Temperatures, Respiration Physiol., vol. 79, pp. 145–150, 1990.
  • J. M. Gorman, E. M. Sparrow, and J. P. Abraham, Differences Between Measured Pipe Wall Surface Temperatures and Internal Fluid Temperatures, Case Stud. Therm. Eng., vol. 1, pp. 13–16, 2013.
  • L. Steck, E. M. Sparrow, and J. P. Abraham, Non-Invasive Measurement of the Human Core Temperature, Int. J. Heat Mass Transfer, vol. 54, pp. 949–982, 2011.
  • A. Brauer, M. J. English, H. Sander, A. Timmermann, U. Braun, and W. Weyland, Construction and Evaluation of a Manikin for Perioperative Heat Exchange, Acta Anaesthesiol. Scand., vol. 46, pp. 3–50, 2002.
  • A. Brauer, M. J. English, N. Steinmetz, N. Lorenz, T. Perl, U. Braun, and W. Weyland, Comparison of Forced-Air Warming Systems with Upperbody Blankets Using a Copper Manikin of the Human Body, Acta Anaesthesiol. Scand., vol. 46, pp. 965–972, 2002.
  • A. Brauer, M. J. English, N. Steinmetz, N. Lorenz, T. Perl, W. Weyland, and M. Quintel, Efficacy of Forced-Air Warming Systems with Full Body Blankets, Can. J. Anesth., vol. 54, pp. 34–41, 2007.
  • A. Brauer, H. Bovenschulte, T. Perl, W. Zink, M. English, and M. Quintel, What Determines the Efficacy of Forced-Air Warming Systems? A Manikin Evaluation with Upper Body Blankets, Anesth. Anal., vol. 108, pp. 192–198, 2009.
  • G. Giesbrecth, M. B. Ducharme, and J. P. McGuire, Comparison of Forced-Air Patient Warming Systems for Perioperative Use, Anesthesiology, vol. 80, pp. 671–679, 1994.
  • P. B. Allen, S. W. Salyer, M. A. Dubick, J. B. Holcomb, and L. H. Blackbourne, Preventing hypothermia: Comparison of Current Devices Used by the US Army in an In Vitro Warmed Fluid Model, J. Trauma, vol. 69, pp. S154–S161, 2010.
  • T. Perl, A. Brauer, A. Timmermann, F. Mielck, W. Weyland, and U. Braun, Differences Among Forced-Air Warming Systems with Upper Body Blankets are Small. A Randomized Trial for Heat Transfer in Volunteers, Acta Anaethesiol. Scand., vol. 47, pp. 1159–1164, 2003.
  • S. Constanzo, A. Cusumano, C. Giaconia, and S. Mazzacane, A Proposed Methodology to Control Body Temperature in Patients at Risk of Hyperthermia by Means of Active Rewarming Systems, Biomed. Res. Int., Article no. 136407, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.