Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 5
554
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of condensation for R410A at varying saturation temperatures in mini/micro tubes

, &
Pages 464-478 | Received 07 Apr 2015, Accepted 10 Jun 2015, Published online: 30 Nov 2015

References

  • S. Garimella, Condensation Flow Mechanisms in Microchannels: Basis for Pressure Drop and Heat Transfer Models, Heat Transfer Eng., vol. 25, pp. 104–116, 2004.
  • J. E. Hajal, J. R. Thome, and A. Cavallini, Condensation in Horizontal Tubes, Part 1: Two-Phase Flow Pattern Map, Int. J. Heat Mass Transfer, vol. 46, pp. 3349–3363, 2003.
  • M. M. Shah, General Correlation for Heat Transfer During Film Condensation inside Pipes, Int. J. Heat Mass Transfer, vol. 22, pp. 547–556, 1979.
  • M. K. Dobson and J. C. Chato, Condensation in Smooth Horizontal Tubes, J. Heat Trans-T ASME, vol. 120, pp. 193–213, 1979.
  • A. Cavallini, D. D. Col, L. Doretti, M. Matkovic, L. Rossetto, C. Zilio, and G. Censi, Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design, Heat Transfer Eng., vol. 27, pp. 31–38, 2006.
  • J. R. Thome, J. E. Hajal, and A. Cavallini, Condensation in Horizontal Tubes, Part 2: New Heat Transfer Model Based on Flow Regimes, Int. J. Heat Mass Transfer, vol. 46, pp. 3365–3387, 2003.
  • S. M. Kim and I. Mudawar, Theoretical Model for Annular Flow Condensation in Rectangular Micro-Channels, Int. J. Heat Mass Transfer, vol. 55, pp. 958–970, 2012.
  • R. W. Lockhart and R. C. Martinelli, Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow In Pipes, Chem. Eng. Prog., vol. 45, pp. 39–48, 1949.
  • W. Zhang, T. Hibiki, and K. Mishima, Correlations of Two-Phase Frictional Pressure Drop and Void Fraction in Mini-Channel, Int. J. Heat Mass Transfer, vol. 53, pp. 453–465, 2010.
  • W. Li and Z. Wu, A General Correlation for Adiabatic Two-Phase Pressure Drop in Micro/Mini-Channels, Int. J. Heat Mass Transfer, vol. 53, pp. 2732–2739, 2010.
  • S. M. Kim and I. Mudawar, Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows, Int. J. Heat Mass Transfer, vol. 55, pp. 3246–3261, 2012.
  • M. Zhang and R. L. Webb, Correlation of Two-Phase Friction for Refrigerants in Small-Diameter Tubes, Exp. Therm. Fluid Sci., vol. 25, pp. 131–139, 2001.
  • K. Mishima and T. Hibiki, Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes, Int. J. Multiphas Flow, vol. 22, pp. 703–712, 1996.
  • D. Beattie and P. Whalley, A Simple Two-Phase Frictional Pressure Drop Calculation Method, Int J Multiphas Flow, vol. 8, pp. 83–87, 1982.
  • A. Cavallini, L. Doretti, M. Matkovic, and L. Rossetto, Update on Condensation Heat Transfer and Pressure Drop inside Minichannels, Heat Transfer Eng., vol. 27, pp. 74–87, 2006.
  • Z. Wu, B. Sundén, L. Wang, and W. Li, Convective Condensation Inside Horizontal Smooth and Microfin Tubes, J. Heat Trans-T ASME, vol. 136, pp. 051504-1–051504-11, 2014.
  • L. Wang, C. Dang, and E. Hihara, Experimental Study on Condensation Heat Transfer and Pressure Drop of Low GWP Refrigerant HFO1234yf in a Horizontal Tube, Int. J. Refrig., vol. 35, pp. 1418–1429, 2012.
  • M. A. Hossain, Y. Onaka, and A. Miyara, Experimental Study on Condensation Heat Transfer, and Pressure Drop in Horizontal Smooth Tube for R1234ze(E), R32 and R410A, Int. J. Refrig., vol. 35, pp. 927–938, 2012.
  • Y. Y. Yan and T. F. Lin, Condensation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe, Int. J. Heat Mass Transfer, vol. 42, pp. 697–708, 1999.
  • H. Ganapathy, A. Shooshtari, K. Choo, S. Dessiatoun, M. Alshehhi, and M. Ohadi, Volume of Fluid-Based Numerical Modeling of Condensation Heat Transfer and Fluid Flow Characteristics in Microchannels, Int. J. Heat Mass Transfer, vol. 65, pp. 62–72, 2013.
  • S. Chen, Z. Yang, Y. Duan, Y. Chen, and D. Wu, Simulation of Condensation Flow in a Rectangular Microchannel, Chem. Eng. Process, vol. 76, pp. 60–69, 2014.
  • S. S. Jeon, S. J. Kim, and G. C. Park, Numerical Study of Condensing Bubble in Subcooled Boiling Flow Using Volume of Fluid Model, Chem. Eng. Sci., vol. 66, pp. 5899–5909, 2011.
  • E. D. Riva and D. D. Col, Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel, J. Heat Trans-T ASME, vol. 134, pp. 051019-1–051019-8, 2012.
  • E. D. Riva, D. D. Col, S. V. Garimella, and A. Cavallini, The Importance of Turbulence During Condensation in a Horizontal Circular Minichannel, Int. J. Heat Mass Transfer, vol. 55, pp. 3470–3481, 2012.
  • S. Bortolin, E. D. Riva, and D. Del Col, Condensation in a Square Minichannel: Application of the VOF Method, Heat Transfer Eng., vol. 35, pp. 193–203, 2014.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface Tension, J. Comput. Phys., vol. 100, pp. 335–354, 1992.
  • W. H. Lee, A Pressure Iteration Scheme for Two-Phase Flow Modeling, in T. N. Veziroglu (ed.), Multiphase Transport Fundamentals, Reactor Safety, Applications, vol. 1, Hemisphere, Washington, DC, 1980.
  • Z. Yang, X. Peng, and P. Ye, Numerical and Experimental Investigation of Two Phase Flow During Boiling in a Coiled Tube, Int. J. Heat Mass Transfer, vol. 51, pp. 1003–1016, 2008.
  • J. H. Wei, L. M. Pan, D. Q. Chen, H. Zhang, J. J. Xu, and Y. P. Huang, Numerical Simulation of Bubble Behaviors in Subcooled Flow Boiling Under Swing Motion, Nucl. Eng. Des., vol. 241, pp. 2898–2908, 2011.
  • D. C. Wilcox, Turbulence Modeling for CFD, 2nd ed., DCW Industries, Inc., La Canada, CA, 1998.
  • D. Jung, Y. Cho, and K. Park, Flow Condensation Heat Transfer Coefficients of R22, R134A, R407c, and R410a Inside Plain and Microfin Tubes, Int. J. Refrig., vol. 27, pp. 25–32, 2004.
  • H. Haraguchi, S. Koyama, and T. Fujii, Condensation of Refrigerants HCFC22, HFC134a, and HCFC123 in a Horizontal Smooth Tube (1st Report, Proposals of Empirical Expressions for the Local Frictional Pressure Drop), Trans. Jpn. Soc. Mech. Eng., vol. 60, pp. 2117–2124, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.