Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 6
428
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamic simulation: Studying the effects of Brownian motion and induced micro-convection in nanofluids

, , &
Pages 643-658 | Received 11 Mar 2015, Accepted 12 Aug 2015, Published online: 04 Jan 2016

References

  • S. U. S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME-Publ.-Fed, vol. 231, pp. 99–105, 1995.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., vol. 78, pp. 718–720, 2001.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., vol. 79, pp. 2252–2254, 2001.
  • H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles, Netsu Bussei, vol. 7, pp. 227–233, 1993.
  • W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Eng., vol. 29, pp. 432–460, 2008.
  • S. M. S. Murshed, K. C. Leong, and C. Yang, Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids, Int. J. Therm. Sci., vol. 44, pp. 367–373, 2005.
  • H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George, and T. Pradeep, Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., vol. 83, pp. 2931–2933, 2003.
  • E. V. Timofeeva, W. Yu, D. M. France, D. Singh, and J. L. Routbort, Nanofluids for Heat Transfer: An Engineering Approach, Nanoscale Res. Lett., vol. 6, pp. 1–7, 2011.
  • D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Model for Heat Conduction in Nanofluids, Phys. Rev. Lett., vol. 93, pp. 144301–1–144301–4, 2004.
  • C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, Empirical Correlation Finding the Role of Temperature, and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement, Appl. Phys. Lett., vol. 87, pp. 153107–1–153107–3, 2005.
  • S. M. S. Murshed, K. C. Leong, and C. Yang, A Combined Model for the Effective Thermal Conductivity of Nanofluids, Appl. Therm. Eng., vol. 29, pp. 2477–2483, 2009.
  • P. Bhattacharya, S. Saha, A. Yadav, P. Phelan, and R. Prasher, Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids, J. Appl. Phys., vol. 95, pp. 6492–6494, 2004.
  • P. Keblinski, S. Phillpot, S. Choi, and J. Eastman, Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transfer, vol. 45, pp. 855–863, 2002.
  • L. Xue, P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, Effect of Liquid Layering at the Liquid–Solid Interface on Thermal Transport, Int. J. Heat Mass Transfer, vol. 47, pp. 4277–4284, 2004.
  • H. Xie, M. Fujii, and X. Zhang, Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture, Int. J. Heat Mass Transfer, vol. 48, pp. 2926–2932, 2005.
  • R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids, Appl. Phys. Lett., vol. 89, pp. 143119–1–143119–3, 2006.
  • R. Prasher, P. E. Phelan, and P. Bhattacharya, Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid), Nano Lett., vol. 6, pp. 1529–1534, 2006.
  • W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids, Int. J. Heat Mass Transfer, vol. 51, pp. 1431–1438, 2008.
  • A. Sergis and Y. Hardalupas, Anomalous Heat Transfer Modes of Nanofluids: A Review Based on Statistical Analysis, Nanoscale Res. Lett., vol. 6, pp. 1–37, 2011.
  • H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids, Int. J. Therm. Sci., vol. 48, pp. 363–371, 2009.
  • X. Zhang, H. Gu, and M. Fujii, Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles, Exp. Therm Fluid Sci., vol. 31, pp. 593–599, 2007.
  • S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transfer, vol. 121, pp. 280–289, 1999.
  • J. H. Lee, S. H. Lee, and S. P. Jang, Do Temperature, and Nanoparticle Size Affect the Thermal Conductivity of Alumina Nanofluids?, Appl. Phys. Lett., vol. 104, pp. 161908–1–161908–4, 2014.
  • M. Vladkov and J. L. Barrat, Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid, Nano Lett., vol. 6, pp. 1224–1228, 2006.
  • W. Evans, J. Fish, and P. Keblinski, Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity, Appl. Phys. Lett., vol. 88, pp. 093116–1–093116–3, 2006.
  • S. Sarkar, and R. P. Selvam, Molecular Dynamics Simulation of Effective Thermal Conductivity, and Study of Enhanced Thermal Transport Mechanism in Nanofluids, J. Appl. Phys., vol. 102, pp. 074302–1–074302–7, 2007.
  • E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, and J. V. Selinger, Thermal Conductivity, and Particle Agglomeration in Alumina Nanofluids: Experiment, and Theory, Phys. Rev. E, vol. 76, pp. 061203–1–061203–16, 2007.
  • D. Singh, E. Timofeeva, W. Yu, J. Routbort, D. France, D. Smith, and J. Lopez-Cepero, An Investigation of Silicon Carbide-Water Nanofluid for Heat Transfer Applications, J. Appl. Phys., vol. 105, pp. 064306–1–064306–6, 2009.
  • D. C. Venerus, M. S. Kabadi, S. Lee, and V. Perez-Luna, Study of Thermal Transport in Nanoparticle Suspensions Using Forced Rayleigh Scattering, J. Appl. Phys., vol. 100, pp. 094310–1–094310–5, 2006.
  • M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids, J. Nanopart. Res., vol. 11, pp. 1129–1136, 2009.
  • E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, and J. L. Routbort, Particle Size, and Interfacial Effects on Thermo-Physical, and Heat Transfer Characteristics of Water-Based α-Sic Nanofluids, Nanotechnology, vol. 21, pp. 215703–1–215703–10, 2010.
  • G. Chen, W. Yu, D. Singh, D. Cookson, and J. Routbort, Application of SAXS to the Study of Particle-Size-Dependent Thermal Conductivity in Silica Nanofluids, J. Nanopart. Res., vol. 10, pp. 1109–1114, 2008.
  • S. P. Jang and S. U. S. Choi, Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids, Appl. Phys. Lett., vol. 84, pp. 4316–4318, 2004.
  • S. P. Jang and S. U. S. Choi, Effects of Various Parameters on Nanofluid Thermal Conductivity, J. Heat Transfer, vol. 129, pp. 617–623, 2007.
  • Y. Xuan, Q. Li, X. Zhang, and M. Fujii, Stochastic Thermal Transport of Nanoparticle Suspensions, J. Appl. Phys., vol. 100, pp. 043507–1–043507–6, 2006.
  • H. E. Patel, T. Sundararajan, and S. K. Das, A Cell Model Approach for Thermal Conductivity of Nanofluids, J. Nanopart. Res., vol. 10, pp. 87–97, 2008.
  • R. Prasher, P. Bhattacharya, and P. E. Phelan, Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids), Phys. Rev. Lett., vol. 94, pp. 25901–1–25901–4, 2005.
  • R. Prasher, P. Bhattacharya, and P. E. Phelan, Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids, J. Heat Transfer, vol. 128, pp. 588–595, 2006.
  • X. Fang, Y. Xuan, and Q. Li, Experimental Investigation on Enhanced Mass Transfer in Nanofluids, Appl. Phys. Lett., vol. 95, pp. 203108–1–203108–3, 2009.
  • S. Krishnamurthy, P. Bhattacharya, P. Phelan, and R. Prasher, Enhanced Mass Transport in Nanofluids, Nano Lett., vol. 6, pp. 419–423, 2006.
  • J. Veilleux, and S. Coulombe, A Total Internal Reflection Fluorescence Microscopy Study of Mass Diffusion Enhancement in Water-Based Alumina Nanofluids, J. Appl. Phys., vol. 108, pp. 104316–1–104316–8, 2010.
  • H. Aminfar and R. Motallebzadeh, Investigation of the Velocity Field and Nanoparticle Concentration Distribution of Nanofluid Using Lagrangian-Eulerian Approach, J. Dispersion Sci. Technol., vol. 33, pp. 155–163, 2012.
  • A. Loya, J. L. Stair, A. R. Jafri, K. Yang, and G. Ren, A Molecular Dynamic Investigation of Viscosity and Diffusion Coefficient of Nanoclusters in Hydrocarbon Fluids, Comput. Mater. Sci., vol. 99, pp. 242–246, 2015.
  • S. S. Ashrafmansouri, M. N. Esfahany, G. Azimi, and N. Etesami, Experimental Investigation of Water Self-Diffusion Coefficient and Tracer Diffusion Coefficient of Tert-Butanol in Water-Based Silica Nanofluids, Int. J. Therm. Sci., vol. 86, pp. 166–174, 2014.
  • V. Subba-Rao, P. M. Hoffmann, and A. Mukhopadhyay, Tracer Diffusion in Nanofluids Measured by Fluorescence Correlation Spectroscopy, J. Nanopart. Res., vol. 13, pp. 6313–6319, 2011.
  • C. Gerardi, D. Cory, J. Buongiorno, L. W. Hu, and T. McKrell, Nuclear Magnetic Resonance-Based Study of Ordered Layering on the Surface of Alumina Nanoparticles in Water, Appl. Phys. Lett., vol. 95, pp. 253104–1–253104–3, 2009.
  • J. Eapen, R. Rusconi, R. Piazza, and S. Yip, The Classical Nature of Thermal Conduction in Nanofluids, J. Heat Transfer, vol. 132, pp. 102402–1–102402–14, 2010.
  • S. Ozturk, Y. A. Hassan, and V. M. Ugaz, Interfacial Complexation Explains Anomalous Diffusion in Nanofluids, Nano Lett., vol. 10, pp. 665–671, 2010.
  • H. Kang, Y. Zhang, M. Yang, and L. Li, Molecular Dynamics Simulation on Effect of Nanoparticle Aggregation on Transport Properties of a Nanofluid, J. Nanotechnol. Eng. Med., vol. 3, pp. 021001–1–021001–6, 2012.
  • H. Babaei, P. Keblinski, and J. Khodadadi, A Proof for Insignificant Effect of Brownian Motion-Induced Micro-Convection on Thermal Conductivity of Nanofluids by Utilizing Molecular Dynamics Simulations, J. Appl. Phys., vol. 113, pp. 084302, 2013.
  • W. J. Zhou, H. B. Luan, J. Sun, Y. L. He, and W. Q. Tao, A Molecular Dynamics and Lattice Boltzmann Multiscale Simulation for Dense Fluid Flows, Numer. Heat Transfer, Part B: Fundam., vol. 61, pp. 369–386, 2012.
  • M. Darbandi, M. Sabouri, and S. Jafari, Thermal Wall Model Effect on the Lid-Driven Nanocavity Flow Simulation Using the Molecular Dynamics Method, Numer. Heat Transfer, Part B: Fundam., vol. 63, pp. 248–261, 2013.
  • L. Chen, Y. L. He, and W. Q. Tao, The Temperature Effect on the Diffusion Processes of Water and Proton in the Proton Exchange Membrane Using Molecular Dynamics Simulation, Numer. Heat Transfer, Part A: Appl., vol. 65, pp. 216–228, 2014.
  • S. Plimpton Lammps-Large-Scale Atomic/Molecular Massively Parallel Simulator, 2007. Available from: http://lammps.sandia.gov/
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graphics, vol. 14, pp. 33–38, 1996.
  • M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, pp. 242–252, Oxford University Press, Oxford, 1987.
  • H. Babaei, P. Keblinski, and J. M. Khodadadi, Equilibrium Molecular Dynamics Determination of Thermal Conductivity for Multi-Component Systems, J. Appl. Phys., vol. 112, pp. 054310–1–054310–5, 2012.
  • J. E. Lennard-Jones and A. F. Devonshire, Critical Phenomena in Gases. I, Proc. R. Soc. London, vol. 163, pp. 53–70, 1937.
  • R. Vogelsang, C. Hoheisel, and G. Ciccotti, Thermal Conductivity of the Lennard‐Jones Liquid by Molecular Dynamics Calculations, J. Chem. Phys., vol. 86, pp. 6371–6375, 1987.
  • J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York, 1992.
  • J. Yu, and J. G. Amar, Effects of Short-Range Attraction in Metal Epitaxial Growth, Phys. Rev. Lett., vol. 89, pp. 286103–1–286103–4, 2002.
  • C. L. Kong, Combining Rules for Intermolecular Potential Parameters, I I. Rules for the Lennard‐Jones (12–6) Potential and the Morse Potential, J. Chem. Phys., vol. 59, pp. 2464–2467, 2003.
  • J. Eapen Modeling Transport Mechanism in Nanofluids, MIT Department of Nuclear Engineering Project Report, Cambridge, MA, 2004.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1, Clarendon Press, Oxford, 1881.
  • X. Feng and D. W. Johnson, Mass Transfer in SiO2 Nanofluids: A Case against Purported Nanoparticle Convection Effects, Int. J. Heat Mass Transfer, vol. 55, pp. 3447–3453, 2012.
  • A. Turanov and Y. V. Tolmachev, Heat-and Mass-Transport in Aqueous Silica Nanofluids, Heat and Mass Transfer, vol. 45, pp. 1583–1588, 2009.
  • B. Jönsson, H. Wennerström, P. Nilsson, and P. Linse, Self-Diffusion of Small Molecules in Colloidal Systems, Colloid. Polym. Sci., vol. 264, pp. 77–88, 1986.
  • A. Sergis and Y. Hardalupas, Molecular Dynamic Simulations of a Simplified Nanofluid, Comput. Meth. Sci. Technol., vol. 20, pp. 113–127, 2014.
  • H. Wendt and F. F. Abraham, Empirical Criterion for the Glass Transition Region Based on Monte Carlo Simulations, Phys. Rev. Lett., vol. 41, pp. 1244–1246, 1978.
  • P. Mausbach and H.-O. May, Static and Dynamic Anomalies in the Gaussian Core Model Liquid, Fluid Phase Equilib., vol. 249, pp. 17–23, 2006.
  • F. Müller-Plathe, A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity, J. Chem. Phys., vol. 106, pp. 6082–6085, 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.