Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 7
553
Views
175
CrossRef citations to date
0
Altmetric
Original Articles

Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall

&
Pages 781-793 | Received 18 Jul 2015, Accepted 02 Sep 2015, Published online: 23 Mar 2016

References

  • K. Khanafer, K. Vafai, and M. Lightstone, Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, Int. J. Heat Mass Transfer, vol. 446, pp. 3639–3653, 2003.
  • A. J. Chamkha, Hydromagnetic Free Convection Flow Over an Inclined Plate Caused by Solar Radiation, AIAA J. Thermophys Heat Transfer, vol. 11, pp. 312–315, 1997.
  • M. S. Kandelousi, KKL Correlation for Simulation of Nanofluid Flow and Heat Transfer in a Permeable Channel, Phys. Lett. A, vol. 378, pp. 3331–3339, 2014.
  • A. J. Chamkha, A Note on Unsteady Hydromagnetic Free Convection from A Vertical Fluid Saturated Porous Medium Channel, ASME J. Heat Transfer, vol. 119, pp. 638–641, 1997.
  • M. Sheikholeslami and S. Abelman, Two Phase Simulation of Nanofluid Flow and Heat Transfer in An Annulus in the Presence of an Axial Magnetic Field, IEEE Trans. Nanotechnol., vol. 14, no. 3, pp. 561–569, 2015.
  • M. Sheikholeslami, S. Abelman, and D. D. Ganji, Numerical Simulation of MHD Nanofluid Flow and Heat Transfer Considering Viscous Dissipation, Int. J. Heat Mass Transfer, vol. 79, pp. 212–222, 2014.
  • H. S. Shu and F. C. Lai, Effect of Electrical Field on Buoyancy-Induced Flows in an Enclosure, Conf. Record—IAS Annu. Meeting (IEEE Ind. Appl. Soc.), vol. 2, pp. 1465–1471, 1995.
  • N. Kasayapanand, J. Tiansuwan, W. Asvapoositkul, N. Vorayos, and T. Kiatsiriroat, Effect of the Electrode Arrangements in Tube Bank on the Characteristic of Electrohydrodynamic Heat Transfer Enhancement: Low Reynolds Number, J. Enhanced Heat Transfer, vol. 9, pp. 229–242, 2002.
  • H. R. Velkoff and R. Godfrey, Low Velocity Heat Transfer to a Flat Plate in the Presence of a Corona Discharge in Air, J. Heat Transfer, vol. 101, pp. 157–63, 1979.
  • E. M. Rarani, N. Etesami, and M. N. Esfahany, Influence of the Uniform Electric Field on Viscosity of Magnetic Nanofluid (Fe3O4-EG), J. Appl. Phys., vol. 112, 2012. doi:10.1063/1.4763469.
  • M. Sheikholeslami, M. M. Rashidi, Dhafer M. Al Saad, F. Firouzi, H. B. Rokni, and G. Domairry, Steady Nanofluid Flow Between Parallel Plates Considering Thermophoresis and Brownian Effects, J. King Saud Univ. – Sci., 2015. doi:10.1016/j.jksus.2015.06.003.
  • M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, Effect of Non-Uniform Magnetic Field on Forced Convection Heat Transfer of Fe3O4 water nanofluid. Comput. Methods Appl. Mech. Eng., vol. 294, pp. 299–312, 2015.
  • S. M. Dash, T. S. Lee, and H. Huang, Natural Convection from an Eccentric Square Cylinder Using a Novel Flexible Forcing IB-LBM Method, Numer. Heat Transfer A, vol. 65, pp. 531–555, 2014.
  • F. Moukalled and M. Darwish, Double Diffusive Natural Convection in a Porous Rhombic Annulus, Numer. Heat Transfer A, vol. 64, pp. 378–399, 2013.
  • A. J. Chamkha, Non-Darcy Fully Developed Mixed Convection in a Porous Medium Channel with Heat Generation/Absorption and Hydromagnetic Effects, Numer. Heat Transfer A, vol. 32, pp. 653–675, 1997.
  • M. Sheikholeslami and M. M. Rashidi, Ferrofluid Heat Transfer Treatment in the Presence of Variable Magnetic Field, Eur. Phys. J. Plus, vol. 130, no. 6,, pp. 1–12, 2015.
  • M. Sheikholeslami, M. Gorji Bandpy, and H. R. Ashorynejad, Lattice Boltzmann Method for Simulation of Magnetic Field Effect on Hydrothermal Behavior of Nanofluid in a Cubic Cavity, Physica A, vol. 432, pp. 58–70, 2015.
  • C. h. Hsu and K. Hsiao, Conjugate Heat Transfer of a Plate Fin in a Second-Grade Fluid Flow, Int. J. Heat Mass Transfer, vol. 41, pp. 1087–1102, 1998.
  • H. Ma, D. Du, J. Sun, Y. Zhang, and N. Deng, Convective Mass Transfer from a Horizontal Rotating Cylinder in a Slot Air jet Flow, Int. J. Heat Mass Transfer, vol. 54, pp. 186–193, 2011.
  • O. D. Makinde, W. A. Khan, and Z. H. Khan, Buoyancy Effects on MHD Stagnation Point Flow and Heat Transfer of a Nanofluid Past a Convectively Heated Stretching/Shrinking Sheet, In. J. Heat Mass Transfer, vol. 62, pp. 526–533, 2013.
  • M. Sheikholeslami and D. D. Ganji, Entropy Generation of Nanofluid in Presence of Magnetic Field Using Lattice Boltzmann Method, Physica A, vol. 417, pp. 273–286, 2015.
  • M. Sheikholeslami, M. Gorji-Bandpy, and K. Vajravelu, Lattice Boltzmann Simulation of Magnetohydrodynamic Natural Convection Heat Transfer of Al2O3-Water Nanofluid in a Horizontal Cylindrical Enclosure with an Inner Triangular Cylinder, Int. J. Heat Mass Transfer, vol. 80, pp. 16–25, 2015.
  • M. Hatami, M. Sheikholeslami, and D. D. Ganji, Nanofluid Flow and Heat Transfer in an Asymmetric Porous Channel with Expanding or Contracting Wall, J. Mol. Liq., vol. 195, pp. 230–239, 2014.
  • M. Hatami, M. Sheikholeslami, and D. D. Ganji, Laminar Flow and Heat Transfer of Nanofluid Between Contracting and Rotating Disks by Least Square Method, Powder Technol., vol. 253, pp. 769–779, 2014.
  • A. J. Chamkha, Coupled Heat and Mass Transfer by Natural Convection About a Truncated Cone in the Presence of Magnetic Field and Radiation Effects, Numer. Heat Transfer A, vol. 39, pp. 511–530, 2001.
  • F. Garoosi, B. Rohani, and M. M. Rashidi, Two-Phase Mixture Modeling of Mixed Convection of Nanofluids in a Square Cavity with Internal and External Heating, Powder Technol., vol. 275, pp. 304–321, 2015.
  • M. Sheikholeslami, M. Hatami, and D. D. Ganji, Nanofluid Flow and Heat Transfer in a Rotating System in the Presence of a Magnetic Field, J. Mol. Liq., vol. 190, pp. 112–120, 2014.
  • M. Hatami and D. D. Ganji, Natural Convection of Sodium Alginate (SA) Non-Newtonian Nanofluid Flow Between Two Vertical Flat Plates by Analytical and Numerical Methods, Case Stud. Therm. Eng., vol. 2, pp. 14–22, 2014.
  • M. Hatami, M. Jafaryar, D. D. Ganji, and M. Gorji-Bandpy, Optimization of Finned-Tube Heat Exchangers for Diesel Exhaust Waste Heat Recovery Using CFD and CCD Techniques, In. Commun. Heat Mass Transfer, vol. 57, pp. 254–263, 2014.
  • A. J. Chamkha, On Laminar Hydromagnetic Mixed Convection Flow in a Vertical Channel with Symmetric and Asymmetric Wall Heating Conditions, Int. J. Heat Mass Transfer, vol. 45, pp. 2509–2525, 2002.
  • F. Garoosi, G. Bagheri, and F. Talebi, Numerical Simulation of Natural Convection of Nanofluids in a Square Cavity with Several Pairs of Heaters and Coolers (HACs) Inside, Int. J. Heat Mass Transfer, vol. 67, pp. 362–376, 2013.
  • M. Sheikholeslami, M. Gorji-Bandpy, and D. D. Ganji, Numerical investigation of MHD Effects on Al2O3-Water Nanofluid Flow and Heat Transfer in a Semi-Annulus Enclosure Using LBM, Energy, vol. 60, pp. 501–510, 2013.
  • M. Sheikholeslami, M. Hatami, and D. D. Ganji, Analytical Investigation of MHD Nanofluid Flow in a Semi-Porous Channel, Powder Technol., vol. 246, pp. 327–336, 2013.
  • K. M. Khanafer and A. J. Chamkha, Hydromagnetic Natural Convection from an Inclined Porous Square Enclosure with Heat Generation. Numer. Heat Transfer A, vol. 33, pp. 891–910, 1998.
  • S. Wang, A. Faghri, and T. L. Bergman, Transient Natural Convection in Vertical Annuli: Numerical Modeling and Heat Transfer Correlation, Numer. Heat Transfer, A, vol. 61, pp. 823–836, 2012.
  • M. Sankar, J. Park, and Y. Do, Natural Convection in a Vertical Annuli with Discrete Heat Sources, Numer. Heat Transfer A, vol. 59, pp. 594–615, 2011.
  • M. Sheikholeslami, D. D. Ganji, M. Y. Javed, and R. Ellahi, Effect of Thermal Radiation on Magnetohydrodynamics Nanofluid Flow and Heat Transfer by Means of Two Phase Model, J. Magn. Magn. Mater., vol. 374, pp. 36–43, 2015.
  • M. Sheikholeslami, M. Gorji-Bandpay, and D. D. Ganji, Magnetic Field Effects on Natural Convection Around a Horizontal Circular Cylinder inside a Square Enclosure Filled with Nanofluid, Int. Commun. Heat Mass Transfer, vol. 39, pp. 978–986, 2012.
  • C. Sun, B. Yu, H. F. OZTOP, Y. Wang, and J. Wei, Control of Mixed Convection in Lid-Driven Enclosures Using Conductive Triangular Fins, Int. J. Heat Mass Transfer, vol. 54, pp. 894–909, 2010.
  • E. Abu-Nada and H. F. Oztop, Numerical Analysis of Al2O3/Water Nanofluids Natural Convection in Wavy Walled Cavity, Numer. Heat Transfer A, vol. 59, pp. 403–419, 2011
  • M. Sheikholeslami and R. Ellahi, Three Dimensional Mesoscopic Simulation of Magnetic Field Effect on Natural Convection of Nanofluid, Int. J. Heat Mass Transfer, vol. 89, pp. 799–808, 2015.
  • M. Sheikholeslami, D. D. Ganji, and H. R. Ashorynejad, Investigation of Squeezing Unsteady Nanofluid Flow using ADM, Powder Technol., vol. 239, pp. 259–265, 2013.
  • M. Sheikholeslami and D. D. Ganji, Chapter 1 – Control Volume Finite Element Method (CVFEM), Hydrotherm. Anal. Eng. Control Volume Finite Elem. Method, vol. 1, pp. 1–12, 2015. doi:10.1016/B978-0-12-802950-3.00001-1.
  • M. Sheikholeslami and D. D. Ganji, Chapter 3–Nanofluid Flow and Heat Transfer in an Enclosure, Hydrotherm. Anal. Eng. Control Volume Finite Elem. Method, vol. 1, pp. 31–76, 2015. doi:10.1016/B978-0-12-802950-3.00003-5.
  • M. Sheikholeslami, M. Gorji Bandpy, R. Ellahi, M. Hassan, and S. Soleimani, Effects of MHD on Cu-Water Nanofluid Flow, and Heat Transfer by means of CVFEM, J. Magn. Magn. Mater., vol. 349, pp. 188–200, 2014.
  • M. Sheikholeslami and M. M. Rashidi, Effect of Space Dependent Magnetic Field on Free Convection of Fe3O4-Water Nanofluid, J. Taiwan Inst. Chem. Eng., 2015. doi:10.1016/j.jtice.2015.03.035
  • A. Lamoureux and B. R. Baliga, Improved Formulations of the Discretized Pressure Equation and Boundary Treatments in Co-Located Equal-Order Control-Volume Finite-Element Methods for Incompressible Fluid Flow, Numer. Heat Transfer B, vol. 59, pp. 442–472, 2011.
  • M. Sheikholeslami, M. G. Bandpy, R. Ellahi, and A. Zeeshan, Simulation of MHD CuO–Water Nanofluid Flow and Convective Heat Transfer Considering Lorentz Forces, J. Magn. Magn. Mater., vol. 369, pp. 69–80, 2014.
  • M. Sheikholeslami, Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition, Eur. Phys. J. Plus, vol. 1, pp. 129–248, 2014.
  • M. Sheikholeslami and D. D. Ganji, Ferrohydrodynamic and Magnetohydrodynamic Effects on Ferrofluid Flow and Convective Heat Transfer, Energy, vol. 75, pp. 400–410, 2014.
  • M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, P. Rana, and S. Soleimani, Magnetohydrodynamic Free Convection of Al2O3-Water Nanofluid Considering Thermophoresis and Brownian Motion Effects, Comput. Fluids, vol. 94, pp. 147–160, 2014.
  • M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, and S. Soleimani, Thermal Management for Free Convection of Nanofluid using Two Phase Model, J. Mol. Liq., vol. 194, pp. 179–187, 2014.
  • A. J. Chamkha, Double-Diffusive Convection in a Porous Enclosure with Cooperating Temperature and Concentration Gradients and Heat Generation or Absorption Effects, Numer. Heat Transfer A, vol. 41, pp. 65–87, 2002.
  • A. J. Chamkha, Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption, Numer. Heat Transfer A, vol. 41, no. 5, pp. 529–546, 2002.
  • M. Sheikholeslami, M. Gorji-Bandpy, and S. Soleimani, Two phase simulation of nanofluid flow and heat transfer using heatline analysis, Int. Commun. Heat Mass Transfer, vol. 47, pp. 73–81, 2013.
  • M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, and S. Soleimani, Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO-water nanofluid in presence of magnetic field, J. Taiwan Inst. Chem. Eng., vol. 45, pp. 40–49, 2014.
  • S. Soleimani, M. Sheikholeslami, D. D. Ganji, and M. Gorji-Bandpay, Natural Convection Heat Transfer in a Nanofluid Filled Semi-Annulus Eenclosure, Int. Commun. Heat Mass Transfer, vol. 39, pp. 565–574, 2012.
  • D. C. Lo, A Novel Volume-of-Solid-Based Immersed-Boundary Method for Viscous Flow with a Moving Rigid Boundary, Numer. Heat Transfer B, vol. 68, pp. 115–140, 2015.
  • D. R. Rousse, F. Asllanaj, N. B. Salah, and S. Lassue, A Consistent Interpolation Function for the Solution of Radiative Transfer on Triangular Meshes, II—Validation, Numer. Heat Transfer B, vol. 59, pp. 116–129, 2011.
  • A. E. Bergles, Enhancement of Heat Transfer, Proc. 6th Int. Heat Transfer Conf., vol. l.6, pp. 89–108, Hemisphere, Washington, DC, 1978.
  • P. J. Martin and A. T. Richardson, Conductivity models of electrothermal convection in plane layer of dielectric liquid, Trans. ASME, J. Heat Transfer, vol. 106, pp. 131–136, 1984.
  • W. J. Worraker and A. T. Richardson, The effect of temperature variations in charge carrier mobility on stationary electrohydrodynamic instability, J. Fluid Mech., vol. 93, pp. 29–45, 1979.
  • T. Fujino, Y. Yokoyama, and Y. H. Mori, Augmentation of laminar forced-convective heat transfer by the application of a transverse electric field, Trans. ASME, J. Heat Transfer, vol. 111, pp. 345–351, 1989.
  • V. G. Babskii, M. V. Zhukov, and V. I. Yudovich, Mathematical Theory of Electrophoresis ( transl. by C. Flick), Consultants Bureau, New York, 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.