Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 7
216
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of a 2D electrothermal pump by lattice Boltzmann method on GPU

&
Pages 677-693 | Received 15 Jul 2015, Accepted 02 Sep 2015, Published online: 23 Mar 2016

References

  • A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, AC Electrokinetics: A Review of Forces in Microelectrode Structures, J. Phys. D: Appl. Phys., vol. 31, no. 18, pp. 2338–2353, 1998. September.
  • N. G. Green, A. Ramos, A. Gonzalez, A. Castellanos, and H. Morgan, Electrothermally Induced Fluid Flow on Microelectrodes, J. Electrost., vol. 53, pp. 71–87, 2001.
  • A. Gonzalez, A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, Electrothermal Flows Generated by Alternating and Rotating Electric Fields in Microsystems, J. Fluid Mech., vol. 564, pp. 415–433, 2006.
  • D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Anal. Chem., vol. 70, pp. 4974–4984, 1998.
  • M. Rhee and M. A. Burns, Microfluidic Assembly Blocks, Lab Chip, vol. 8. no. 8, pp. 1365–1373, 2008, August.
  • J. I. Martinez-Lopez et al., Characterization of Electrokinetic Mobility of Microparticles in Order to Improve Dielectrophoretic Concentration, Anal. Bioanal. Chem., vol. 394, no. 1, pp. 293–302, 2009, May. [Online Database].
  • I. R. Perch-Nielsen, N. G. Green, and A. Wolff, Numerical Simulation of Travelling Wave Induced Electrothermal Fluid Flow, J. Phys. D Appl. Phys., vol. 37, pp. 2323–2330, 2004.
  • D. F. Chen and H. Du, Simulation Studies on Electrothermal Fluid Flow Induced in Dielectrophoretic Microelectrode System, J. Micromech. Microeng., vol. 16, pp. 2411–2419, 2006.
  • J. Cao, P. Cheng, F. Hong, A Numerical Analysis of Forces Imposed on Particles in Conventional Dielectrophoresis in Microchannels with Interdigitated Electrodes, J. Electrostat., vol. 66, pp. 620–626, 2008.
  • J. Wu, M. Lian, and K. Yang, Micropumping of Biofluids by Alternating Current Electrothermal Effects, Appl. Phys. Lett., vol. 90, no. 23, Paper no. 234103, 2007.
  • E. Du, S. Manoochehri, Enhanced AC Electrothermal Fluidic Pumping in Microgrooved Channels, J. Appl. Phys., vol. 104, no. 6, Paper no. 064902, 2008.
  • F. J. Hong, J. Cao, and P. Cheng, A Parametric Study of AC Electrothermal Flow in Microchannels with Asymmetrical Interdigitated Electrodes, Int. Commun. Heat Mass Transfer, vol. 38, pp. 275–279, 2011.
  • F. J. Hong, F. Bai, and P. Cheng, Numerical Simulation of AC Electrothermal Micropump Using a Fully Coupled Model, Microfluid. Nanofluid., vol. 13, pp. 411–420, 2012.
  • J. J. Feng, S. Krishnamoorthy, and S. Sundaram Numerical Analysis of Mixing by Electrothermal Induced Flow in Microfluidic Systems, Biomicrofluidics, vol. 1, p. 024102, 2007.
  • H. C. Feldman, M. Sigurdson, and C. D. Meinhart, AC Electrothermal Enhancement of Heterogeneous Assays in Microfluidics, Lab Chip, vol. 7, pp. 1553–1559, 2007.
  • K.-R. Huang, J.-S. Chang, S. D. Chao, K.-C. Wu, C.-K. Yang, C.-Y. Lai, and S.-H. Chen, Simulation on Binding Efficiency of Immunoassay for a Biosensor with Applying Electrothermal Effect, J. Appl. Phys., vol. 104, pp. 064702, 2008. doi:10.1063/1.2981195.
  • S. Chen and G. D. Doolen, Lattice Boltzmann Method for Fluid Flows, Annu. Rev. Fluid Mech., vol. 30, pp. 329–64, 1998.
  • S. Biswas, P. Sharma, B. Mondal, G. Biswas, Analysis of Mixed Convective Heat Transfer in a Ribbed Channel Using the Lattice Boltzmann Method, Numer. Heat Transfer, Part A: Appl., vol. 68, no. 1, pp. 75–98, 2015.
  • W. N. Zhou and Y. Y. Yan, Numerical Investigation of the Effects of a Magnetic Field on Nanofluid Flow and Heat Transfer by the Lattice Boltzmann Method, Numer. Heat Transfer, Part A: Appl., vol. 68, no. 1, pp. 1–16, 2015.
  • M. EI Abdallaoui, M. Hasnaoui, A. Amahmid, Lattice-Boltzmann Modeling of Natural Convection Between a Square Outer Cylinder and An Inner Isosceles Triangular Heating Body, Numer. Heat Transfer, Part A: Appl., vol. 66, no. 9, pp. 1076–1096, 2014.
  • S. Gong and P. Cheng, Numerical Investigation of Saturated Flow Boiling in Microchannels by the Lattice Boltzmann Method, Numer. Heat Transfer, Part A: Appl., vol. 65, no. 7, pp. 644–661, 2014.
  • A. Tarokh, A. A. Mohamad, and L. Jiang, Simulation of Conjugate Heat Transfer Using the Lattice Boltzmann Method, Numer. Heat Transfer, Part A: Appl., vol. 63, no. 3, pp. 159–178, 2013.
  • L. Jahanshaloo, E. Pouryazdanpanah and N. A. Che Sidik, A Review on the Application of the Lattice Boltzmann Method for Turbulent Flow Simulation, Numer. Heat Transfer, Part A: Appl., vol. 64, no. 11, pp. 938–953, 2013.
  • CUDA Toolkit Documentation v6.5, NVIDIA CORPORATION.
  • G. Ruetsch and M. Fatica CUDA Fortran for Scientists and Engineers, NVIDIA Corporation.
  • P. Bailey, J. Myre, S. D. C. Walsh, D. J. Lilja, M. O. Saar Accelerating Lattice Boltzmann Fluid Flow Simulations Using Graphics Processors, International Conference on Parallel Processing, Vienna, Austria, 2009.
  • C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux, A New Approach to the Lattice Boltzmann Method for Graphics Processing Units, Comput. Math. Appl., vol. 61, pp. 3628–3638, 2011.
  • Y. Zhao, Lattice Boltzmann Based PDE Solver on the GPU, Visual Comput., vol. 24, pp. 323–333, 2008.
  • E. Riegel, T. Indinger, and N. A. Adams, Implementation of a Lattice-Boltzmann Method for Numerical Fluid Mechanics Using the NVIDIA CUDA Technology, CSRD, vol. 23, pp. 241–247, 2009.
  • C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux, Multi-GPU Implementation of the Lattice Boltzmann Method, Comput. Math. Appl., vol. 65, pp. 252–261, 2013.
  • J. Habich, C. Feichtinger, H. Kostler, G. Hager, and G. Wellein, Performance Engineering for the Lattice Boltzmann Method on GPGPUS: Architectural Requirements and Performance Results, Comput Fluids, vol. 80, pp. 276–282, 2013.
  • F. Rong, W. Zhang, B. Shi, and Z. Guo, Numerical Study of Heat Transfer Enhancement in a Pipe Filled with Porous Media by Axisymmetric TLB Model Based on GPU, Int. J. Heat Mass Transfer, vol. 70, pp. 1040–1049, 2014.
  • Q. Ren, C. L. Chan, and A. L. Arvayo, A Numerical Study of 2D Electrothermal Flow Using Boundary Element Method, Appl. Math. Model., vol. 39, pp. 2777–2795, 2015.
  • Lenntech, Water Treatment Solutions Lenntech [Online], 2011, www.lenntech.com/applications/ultrapure/conductivity/water-conductivity.htm.
  • Incropera and D. P. DeWitt Fundamentals of Heat and Mass Transfer, 5th ed., Wiley, Hoboken, NJ, 2002.
  • Z. Guo, C. Zheng, and B. Shi, Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method, Phys. Rev. E, vol. 65, no. 046308, pp. 1–6, 2002.
  • H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers : With Applications in Incompressible Fluid Dynamics, p.11, OUP Oxford, May 19, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.