Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 9
347
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation

, , &
Pages 996-1013 | Received 27 May 2015, Accepted 12 Dec 2015, Published online: 23 Mar 2016

References

  • W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Eng., vol. 29, pp. 432–460, 2008.
  • E. Goharshadi, H. Ahmadzadeh, S. Samiee, and M. Hadadian, Nanofluids for Heat Transfer Enhancement – A Review, Phys. Chem. Res., vol. 1, pp. 1–33, 2013.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., vol. 78, pp. 718–720, 2001.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., vol. 79, pp. 2252–2254, 2001.
  • R. Saidur, K. Y. Leong, and H. A. Mohammad, A Review on Applications and Challenges of Nanofluids, Renew. Sustain. Energy Rev., vol. 15, pp. 1646–1668, 2011.
  • J. H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. Choi, and C. J. Choi, Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles, Int. J. Heat Mass Transfer, vol. 51, pp. 2651–2656, 2008.
  • J. Garg, B. Poudel, M. Chiesa, J. Gordon, J. Ma, J. Wang, Z. Ren, Y. Kang, H. Ohtani, and J. Nanda, Enhanced Thermal Conductivity, and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid, J. Appl. Phys., vol. 103, pp. 074301-1–074301-6, 2008.
  • M. Kole and T. Dey, Enhanced Thermophysical Properties of Copper Nanoparticles Dispersed in Gear Oil, Appl. Therm. Eng., vol. 56, pp. 45–53, 2013.
  • I. Mahbubul, R. Saidur, and M. Amalina, Latest Developments on the Viscosity of Nanofluids, Int. J. Heat Mass Transfer, vol. 55, pp. 874–885, 2012.
  • M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids, J. Nanopart. Res., vol. 11, pp. 1129–1136, 2009.
  • E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, and J. L. Routbort, Particle Size and Interfacial Effects on Thermo-Physical and Heat Transfer Characteristics of Water-Based A-SiC Nanofluids, Nanotechnology, vol. 21, pp. 215703-1–215703-10, 2010.
  • G. Chen, W. Yu, D. Singh, D. Cookson, and J. Routbort, Application of SAXS to the Study of Particle-Size-Dependent Thermal Conductivity in Silica Nanofluids, J. Nanopart. Res., vol. 10, pp. 1109–1114, 2008.
  • Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward through a Vertical Pipe, Int. J. Heat Mass Transfer, vol. 50, pp. 2272–2281, 2007.
  • C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, Temperature and Particle-Size Dependent Viscosity Data for Water-based Nanofluids–Hysteresis Phenomenon, Int. J. Heat Fluid Flow, vol. 28, pp. 1492–1506, 2007.
  • J. H. Lee, S. H. Lee, and S. P. Jang, Do Temperature and Nanoparticle Size Affect the Thermal Conductivity of Alumina Nanofluids? Appl. Phys. Lett., vol. 104, pp. 161908-1–161908-4, 2014.
  • S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transfer, vol. 121, pp. 280–289, 1999.
  • P. Namburu, D. Kulkarni, A. Dandekar, and D. Das, Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids, Micro Nano Lett., vol. 2, pp. 67–71, 2007.
  • J. Chevalier, O. Tillement, and F. Ayela, Rheological Properties of Nanofluids Flowing through Microchannels, Appl. Phys. Lett., vol. 91, pp. 233103-1–233103-3, 2007.
  • V. Y. Rudyak, Viscosity of Nanofluids–Why It Is Not Described by the Classical Theories, Adv. Nanopart., vol. 2, pp. 266–279, 2013.
  • M. Pastoriza-Gallego, C. Casanova, J. Legido, and M. Piñeiro, Cuo in Water Nanofluid: Influence of Particle Size and Polydispersity on Volumetric Behaviour and Viscosity, Fluid Phase Equilib., vol. 300, pp. 188–196, 2011.
  • K. Anoop, T. Sundararajan, and S. K. Das, Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region, Int. J. Heat Mass Transfer, vol. 52, pp. 2189–2195, 2009.
  • M. J. Pastoriza-Gallego, L. Lugo, J. L. Legido, and M. M. Piñeiro, Thermal Conductivity and Viscosity Measurements of Ethylene Glycol-Based Al2O3 Nanofluids, Nanoscale Res. Lett., vol. 6, pp. 1–11, 2011.
  • V. Y. Rudyak and S. Krasnolutskii, Dependence of the Viscosity of Nanofluids on Nanoparticle Size and Material, Phys. Lett. A, vol. 378, pp. 1845–1849, 2014.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, J. Heat Transfer, vol. 125, pp. 567–574, 2003.
  • P. K. Namburu, D. P. Kulkarni, D. Misra, and D. K. Das, Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture, Exp. Therm. Fluid Sci., vol. 32, pp. 397–402, 2007.
  • C. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, and H. Angue Mintsa, Viscosity Data for Al2O3–Water Nanofluid—Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable? Int. J. Therm. Sci., vol. 47, pp. 103–111, 2008.
  • I. Tavman, A. Turgut, M. Chirtoc, H. Schuchmann, and S. Tavman, Experimental Investigation of Viscosity and Thermal Conductivity of Suspensions Containing Nanosized Ceramic Particles, Arch. Mater. Sci., vol. 34, pp. 99–104, 2008.
  • D. C. Venerus, M. S. Kabadi, S. Lee, and V. Perez-Luna, Study of Thermal Transport in Nanoparticle Suspensions Using Forced Rayleigh Scattering, J. Appl. Phys., vol. 100, pp. 094310-1–094310-5, 2006.
  • X. Zhang, H. Gu, and M. Fujii, Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles, Exp. Therm. Fluid Sci., vol. 31, pp. 593–599, 2007.
  • E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, and J. V. Selinger, Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory, Phys. Rev. E, vol. 76, pp. 061203-1–061203-16, 2007.
  • D. Singh, E. Timofeeva, W. Yu, J. Routbort, D. France, D. Smith, and J. Lopez-Cepero, An Investigation of Silicon Carbide-Water Nanofluid for Heat Transfer Applications, J. Appl. Phys., vol. 105, pp. 064306-1–064306-6, 2009.
  • J. R. V. Peñas, J. M. O. de Zárate, and M. Khayet, Measurement of the Thermal Conductivity of Nanofluids by the Multicurrent Hot-Wire Method, J. Appl. Phys., vol. 104, pp. 044314-1–044314-8, 2008.
  • M. P. Beck, T. Sun, and A. S. Teja, The Thermal Conductivity of Alumina Nanoparticles Dispersed in Ethylene Glycol, Fluid Phase Equilib., vol. 260, pp. 275–278, 2007.
  • M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, The Thermal Conductivity of Alumina Nanofluids in Water, Ethylene Glycol, and Ethylene Glycol + Water Mixtures, J. Nanopart. Res., vol. 12, pp. 1469–1477, 2010.
  • X. Zhang, H. Gu, and M. Fujii, Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids, Int. J. Thermophys., vol. 27, pp. 569–580, 2006.
  • S. Plimpton Lammps-Large-Scale Atomic/Molecular Massively Parallel Simulator, 2007. Available from: http://lammps.sandia.gov/
  • W. Humphrey, A. Dalke, and K. Schulten, Vmd: Visual Molecular Dynamics, J. Mol. Graphics, vol. 14, pp. 33–38, 1996.
  • D. C. Rapaport The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 2004.
  • H. Babaei, P. Keblinski, and J. M. Khodadadi, Equilibrium Molecular Dynamics Determination of Thermal Conductivity for Multi-Component Systems, J. Appl. Phys., vol. 112, pp. 054310-1–054310-5, 2012.
  • J. E. Lennard-Jones and A. F. Devonshire, Critical Phenomena in Gases. I, Proc. R. Soc. Lond., vol. 163, pp. 53–70, 1937.
  • R. Vogelsang, C. Hoheisel, and G. Ciccotti, Thermal Conductivity of the Lennard-Jones Liquid by Molecular Dynamics Calculations, J. Chem. Phys., vol. 86, pp. 6371–6375, 1987.
  • F. Müller-Plathe, A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity, J. Chem. Phys., vol. 106, pp. 6082–6085, 1997.
  • J. Yu and J. G. Amar, Effects of Short-Range Attraction in Metal Epitaxial Growth, Phys. Rev. Lett., vol. 89, pp. 286103-1–286103-4, 2002.
  • C. L. Kong, Combining Rules for Intermolecular Potential Parameters, II. Rules for the Lennard-Jones (12–6) Potential and the Morse Potential, J. Chem. Phys., vol. 59, pp. 2464–2467, 2003.
  • J. M. Haile Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York, NY, 1992.
  • T. Wang, X. Wang, Z. Luo, and K. Cen, Physics Behind the Oscillation of Pressure Tensor Autocorrelation Function for Nanocolloidal Dispersions, J. Nanosci. Nanotechnol., vol. 8, pp. 3990–3994, 2008.
  • P. Keblinski, S. Phillpot, S. Choi, and J. Eastman, Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transfer, vol. 45, pp. 855–863, 2002.
  • J. Maxwell A Treatise on Electricity End Magnetism, 3rd ed., Dover, New York, NY, 1954.
  • A. Sergis and Y. Hardalupas, Anomalous Heat Transfer Modes of Nanofluids: A Review Based on Statistical Analysis, Nanoscale Res. Lett., vol. 6, pp. 1–37, 2011.
  • E. V. Timofeeva, J. L. Routbort, and D. Singh, Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids, J. Appl. Phys., vol. 106, pp. 014304-1–014304-10, 2009.
  • J. L. Barrat and F. Chiaruttini, Kapitza Resistance at the Liquid—Solid Interface, Mol. Phys., vol. 101, pp. 1605–1610, 2003.
  • S. Maruyama and T. Kimura, A Study on Thermal Resistance over a Solid-Liquid Interface by the Molecular Dynamics Method, Therm. Sci. Eng., vol. 7, pp. 63–68, 1999.
  • L. Xue, P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, Two Regimes of Thermal Resistance at a Liquid–Solid Interface, J. Chem. Phys., vol. 118, pp. 337–339, 2003.
  • S. T. Huxtable, D. G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M. S. Strano, G. Siddons, and M. Shim, Interfacial Heat Flow in Carbon Nanotube Suspensions, Nat. Mater., vol. 2, pp. 731–734, 2003.
  • N. Shalkevich, A. Shalkevich, and T. Bürgi, Thermal Conductivity of Concentrated Colloids in Different States, J. Phys. Chem. C, vol. 114, pp. 9568–9572, 2010.
  • J. Gao, R. Zheng, H. Ohtani, D. Zhu, and G. Chen, Experimental Investigation of Heat Conduction Mechanisms in Nanofluids. Clue on Clustering, Nano Lett., vol. 9, pp. 4128–4132, 2009.
  • M. Vladkov and J. L. Barrat, Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid, Nano Lett., vol. 6, pp. 1224–1228, 2006.
  • W. Evans, J. Fish, and P. Keblinski, Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity, Appl. Phys. Lett., vol. 88, pp. 093116-1–093116-3, 2006.
  • A. Einstein, Eine Neue Bestimmung Der Moleküldimensionen, Ann. Phys., vol. 324, pp. 289–306, 1906.
  • G. Batchelor, The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles, J. Fluid Mech., vol. 83, pp. 97–117, 1977.
  • W. Q. Lu and Q. M. Fan, Study for the Particle’s Scale Effect on Some Thermophysical Properties of Nanofluids by a Simplified Molecular Dynamics Method, Eng. Anal. Boundary Elem., vol. 32, pp. 282–289, 2008.
  • R. Prasher, D. Song, J. Wang, and P. Phelan, Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications, Appl. Phys. Lett., vol. 89, pp. 133108-1–133108-3, 2006.
  • E. V. Timofeeva, W. Yu, D. M. France, D. Singh, and J. L. Routbort, Nanofluids for Heat Transfer: An Engineering Approach, Nanoscale Res. Lett., vol. 6, pp. 1–7, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.