Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 10
293
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

LES of convective heat transfer and incompressible fluid flow past a square cylinder

, , &
Pages 1106-1124 | Received 23 Jun 2015, Accepted 28 Aug 2015, Published online: 23 Mar 2016

References

  • Z. J. Zhu, Numerical Study of Flows Around Rectangular Cylinders, Ph.D. thesis, Shanghai Jiaotong University, P.R. China, pp. 1–22, 1990 (in Chinese).
  • R. Hilpert, Wärmeabgabe von beheizten Dräten und Rohren im Luftstrom. Forsch. Ingenieurwesen, vol. 4, pp. 215–224, 1933; also: E. Eckert, Einführung in den Wärme- und Stoffaustausch, Springer, Berlin Heidelberg, New York, 1959.
  • T. Igarashi, Fluid Flow and Heat Transfer Around Rectangular Cylinders (The Case of a Width/Height Ratio of a Section of 0.33–1.5), Int. J. Heat Mass Transfer, vol. 30, pp. 893–901, 1987.
  • S. aus der Wiesche, Large-Eddy Simulation Study of an Air Flow Past a Heated Square Cylinder, Heat Mass Transfer, vol. 43, pp. 515–525, 2007.
  • E. M. Sparrow, J. P. Abraham, and H. C. K. Tong, Archival Correlations for Average Heat Transfer Coefficients for Non-Circular Cylinders and for Spheres in Cross-Flow, Int. J. Heat Mass Transfer, vol. 47, pp. 5285–5296, 2004.
  • B. J. Vickery, Fluctuating Lift and Drag on a Long Cylinder of Square Cross-Section in a Smooth and in a Turbulent Stream, J. Fluid Mech., vol. 25, pp. 481–494, 1966.
  • A. Okajima, Strouhal Numbers of Rectangular Cylinders, J. Fluid Mech., vol. 123, pp. 379–398, 1982.
  • P. W. Bearman and D. M. Trueman, An Investigation of the Flow Around Rectangular Cylinders, Aeronaut. Q., vol. 23, pp. 229–237, 1972.
  • J. Courchesne and A. Laneville, An Experimental Evaluation of Drag Coefficient for Rectangular Cylinders Exposed to Grid Turbulence, ASME J. Fluids Eng., vol. 104, pp. 523–528, 1982.
  • Y. Nakamura and Y. Tomonari, The Effect of Turbulence on the Drags of Rectangular Prisms, Jpn. Soc. Aeronaut. Space Sci. Trans., vol. 19, pp. 82–86, 1976.
  • R. W. Davis, E. F. Moore, and L. P. Purtell, A Numerical-Experimental Study on Confined Flow Around Rectangular Cylinders, Phys. Fluids, vol. 23, pp. 46–59, 1984.
  • D. A. Lyn and W. Rodi, The Flapping Shear Layer Formed by Flow Separation from the Forward Corner of a Square Cylinder, J. Fluid Mech., vol. 267, pp. 353–376, 1994.
  • J. C. K. Tong, J. P. Abraham, J. M. Y. Tse, and E. M. Sparrow, Using Corner Chamfers to Reduce the Drag of Flat-Sided Columns, Proc. ICE – Eng. Comput. Mech., vol. 168, no. 2, pp. 79–88, 2015.
  • S. C. Luo, M. G. Yazdani, Y. T. Chew, and T. S. Lee, Effects of Incidence and Afterbody Shape on Flow Past Bluff Cylinders, J. Wind Eng. Ind. Aerodynam., vol. 53, pp. 375–99, 1994.
  • T. Tamura and T. Miyagi, The Effect of Turbulence on Aerodynamic Forces on a Square Cylinder with Various Corner Shapes, J. Wind Eng. Ind. Aerodynam., vol. 83, pp. 135–145, 1999.
  • S. C. Luo, Y. T. Chew, and Y. T. Ng, Characteristics of Square Cylinder Wake Transition Flows, Phys. Fluids, vol. 15, pp. 2549–2559, 2003.
  • A. K. Saha, K. Muralidhar, and G. Biswas, Experimental Study of Flow Past a Square Cylinder at High Reynolds Numbers, Exp. Fluids, vol. 29, nos. 1–6, pp. 553–563, 2000.
  • H. F. Wang and Y. Zhou, The Finite-Length Square Cylinder Near Wake, J. Fluid Mech., vol. 638, pp. 453–490, 2009.
  • G. Bosch and W. Rodi, Simulation of Vortex Shedding Past a Square Cylinder with Different Turbulence Models, Int. J. Numer. Meth. Fluids, vol. 28, pp. 601–616, 1998.
  • M. Kato and B. E. Launder, The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders, Proc. 9th Symp. Turbulent Shear Flows, Kyoto, 10–4-1, 1993.
  • K. Ryu, S. J. Yook, and K. S. Lee, Forced Convection Across a Locally Heated Square Cylinder Near a Wall, Numer. Heat Transfer, A: Appl., vol. 66, no. 10, pp. 972–986, 2014.
  • J. L. Niu, Z. J. Zhu, and S. H. Huang, Numerical Study of Convective Heat Transfer from Two Identical Square Cylinders Submerged in a Uniform Cross Flow, Numer. Heat Transfer, A: Appl., vol. 50, pp. 21–44, 2006.
  • J. L. Niu and Z. J. Zhu, Numerical Study of Three-Dimensional Flows Around Two Identical Square Cylinders in Staggered Arrangements, Phys. Fluids, vol. 18, p. 044106, 2006.
  • A. Sohankar, C. Norberg, and L. Davidson, Simulation of Three-Dimensional Flow Around a Square Cylinder at Moderate Reynolds Numbers, Phys. Fluids, vol. 11, pp. 288–306, 1999.
  • A. K. Saha, G. Biswas, and K. Muralidhar, Three-Dimensional Study of Flow Past a Square Cylinder at Low Reynolds Numbers, Int. J. Heat Fluid Flow, vol. 24, pp. 54–66, 2003.
  • A. K. Saha, K. Muralidhar, and G. Biswas, Vortex Structures and Kinetic Energy Budget in Two-Dimensional Flow Past a Square Cylinder, Comput. Fluids, vol. 29, no. 6, pp. 669–694, 2000.
  • A. K. Saha, K. Muralidhar, and G. Biswas, Transition and Chaos in Two-Dimensional Flow Past a Square Cylinder, ASCE J. Eng. Mech., vol. 126, no. 5, pp. 523–532, 2000.
  • D. Chatterjee, G. Biswas, and S. Amiroudine, Mixed Convection Heat Transfer from a in Line Row of Square Cylinders in Cross Flow at Low Reynolds Number, Numer. Heat Transfer, A: Appl., vol. 61, no. 12, pp. 891–911, 2012.
  • D. Chatterjee and B. Mondal, Mixed Convection Heat Transfer from Tandem Square Cylinder for Various Gap to Size Ratios, Numer. Heat Transfer, A: Appl., vol. 62, no. 2, pp. 101–119, 2013.
  • F. Karimi, H. T. Xu, Z. Wang, M. Yang, and Y. Zhang, Numerical Simulation of Unsteady Convection from Heated Horizontal Circular Cylinders in a Square Enclosure, Numer. Heat Transfer, A: Appl., vol. 65, no. 8, pp. 715–731, 2014.
  • D. Chatterjee and S. K. Gupta, Convective Transport Around a Rotating Square Cylinder at Moderate Reynolds Numbers, Numer. Heat Transfer, A: Appl., vol. 67, no. 12, pp. 1386–1407, 2015.
  • D. Chatterjee and S. K. Gupta, Convective Transport Around Rows of Square Cylinders in Staggered Fashion at Moderate Reynolds Numbers, Numer. Heat Transfer, A: Appl., vol. 68, no. 4, pp. 388–410, 2015.
  • S. Krajnovic and L. Davidson, Large Eddy Simulation of the Flow Around a Bluff Body, AIAA J., vol. 40, no. 5, pp. 927–936, 2002.
  • A. Sohankar, Flow over a Bluff Body from Moderate to High Reynolds Numbers using Large Eddy Simulation, Comput. Fluids, vol. 35, pp. 1154–1168, 2006.
  • K. Hanjalic, One-Point Closure Model for Buoyancy-Driven Turbulent Flows, Annu. Rev. Fluid Mech., vol. 34, pp. 321–347, 2002.
  • N. N. Smirnov and V. F. Nikitin, Modeling and Simulation of Hydrogen Combustion in Engines, Int. J. Hydrogen Energy, vol. 112, pp. 1122–1136, 2014.
  • P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 1996.
  • J. S. Smagorinsky, Gesneral Circulation Experiments with the Primitive Equations, the Basic Experiment, Mon. Weather Rev., vol. 91, no. 3, pp. 99–164, 1963.
  • P. Moin and J. Kim, Numerical Investigation of Turbulent Channel Flow, J. Fluid Mech., vol. 118, pp. 341–377, 1982.
  • M. S. Vázquez and O. Métais, Large-Eddy Simulation of the Turbulent Flow through a Heated Square Duct, J. Fluid Mech., vol. 453, pp. 201–238, 2002.
  • O. Métais and M. Lesieur, New Tren in Large Eddy Simulation of Turbulence, Annu. Rev. Fluid Mech., vol. 28, pp. 45–82, 1996.
  • J. Pallares and L. Davidson, Large-Eddy Simulations of Turbulent Flow in a Rotating Square Duct, Phys. Fluids, vol. 12, pp. 2878–2894, 2000.
  • K. F. Yu, K. S. Lau, and C. K. Chan, Large Eddy Simulation of Particle-Laden Turbulent Flow over a Backward-Facing Step, Commun. Nonlinear Sci. Numer. Simul., vol. 9, no. 2, pp. 251–262, 2004.
  • Y. C. Guo, P. Jiang, C. K. Chan, and W. Y. Lin, Large Eddy Simulation of Coherent Structures in Rectangular Methane Non-Premixed Flame, J. Comput. Appl. Math., vol. 235, no. 13, pp. 3760–3767, 2011.
  • C. Duwig, K. J. Nogenmyr, C. K. Chan, and M. Dunn, Large Eddy Simulations of a Piloted Lean Premixed Jet Flame using Finite-Rate Chemistry, Combust., Theory Modell., vol. 15, no. 4, pp. 537–568, 2011.
  • Y. Y. Wu, C. K. Chan, and L. X. Zhou, Large Eddy Simulation of an Ethylene-Air Turbulent Premixed v-Flame, J. Comput. Appl. Math., vol. 235, no. 13, pp. 3768–3774, 2011.
  • M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A Dynamic Subgrid-Scale Eddy Viscosity Model, Phys. Fluids A, vol. 3, no. 7, pp. 1760–1765, 1991.
  • D. K. Lilly, A Proposed Modification of the Germano Subgrid-Scale Closure Model, Phys. Fluids A, vol. 4, no. 3, pp. 633–635, 1992.
  • G. X. Cui, C. X. Xu, and Z. S. Zhang, Progress in Large Eddy Simulation of Turbulent Flows, Acta Aerodynam. Sin., vol. 22, no. 2, pp. 121–129, 2004 (in Chinese).
  • G. X. Cui, H. B. Zhou, Z. S. Zhang, and L. Shao, A New Subgrid Eddy Viscosity Model and Its Application, Chin. J. Comput. Phys., vol. 21, no. 3, pp. 289–293, 2004 (in Chinese).
  • A. W. Vreman, An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications, Phys. Fluids, vol. 16, no. 10, pp. 3670–3681, 2004.
  • Z. J. Zhu, H. X. Yang, and T. Y. Chen, Numerical Study of Turbulent Heat and Fluid Flow in a Straight Square Duct at Higher Reynolds Numbers, Int. J. Heat Mass Transfer, vol. 53, pp. 356–364, 2010.
  • F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations, Phys. Fluids, vol. 23, p. 085106, 2011.
  • A. Verma and K. Mahesh, A Lagrangian Subgrid-Scale Model with Dynamic Estimation of Lagrangian Time Scale for Large Eddy Simulation of Complex Flows, Phys. Fluids, vol. 24, p. 085101, 2012.
  • D. D. Holm, Fluctuation Effects on 3d Lagrangian Mean and Eulerian Mean Fluid Motion, Phys. D, vol. 133, nos. 1–4, pp. 215–269, 1999.
  • A. Cheskidov, D. D. Holm, E. Olson, and E. S. Titi, On a Leray- Model of Turbulence, Proc. Roy. Soc. Lond. A, vol. 461, no. 2055, pp. 629–649, 2005.
  • B. J. Geurts and D. D. Holm, Regularization Modeling for Large-Eddy Simulation, Phys. Fluids, vol. 15, pp. L13–L16, 2003.
  • M. van Reeuwijk, H. J. J. Jonker, and K. Hanjalic, Wind and Boundary Layers in Rayleigh Bernard Convection. I. Analysis and Modelling, Phys. Rev. E, vol. 77, p. 036311, 2008.
  • M. van Reeuwijk, H. J. J. Jonker, and K. Hanjalic, Leray- Simulations of Wall-Bounded Turbulent Flows, Int. J. Heat Fluid Flow, vol. 30, pp. 1044–1053, 2009.
  • E. Tadmor, Convergence of Spectral Methods for Nonlinear Conservation Laws, SIAM J. Numer. Anal., vol. 26, pp. 1–30, 1989.
  • G. Karamanos and G. E. Karniadakis, A Spectral Vanishing Viscosity Method for Large-Eddy Simulations, J. Comput. Phys., vol. 163, pp. 22–50, 2000.
  • R. Pasquetti, Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows, J. Sci. Comput., vol. 27, pp. 365–375, 2006.
  • E. Lamballais, V. Fortuné, and S. Laizet, Straightforward High-Order Numerical Dissipation via the Viscous Term for Direct and Large Eddy Simulation, J. Comput. Phys., vol. 230, pp. 3270–3275, 2011.
  • T. Dairay, V. Fortuné, E. Lamballais, and L. E. Brizzi, LES of a Turbulent Jet Impinging on a Heated Wall using High-Order Numerical Schemes, Int. J. Heat Fluid Flow, vol. 50, pp. 177–187, 2014.
  • Z. J. Zhu, J. L. Niu, and Y. L. Li, Swirling-Strength based Large Eddy Simulation of Turbulent Flows Around Single Square Cylinder at Low Reynolds Numbers, Appl. Math. Mech. Engl. Ed., vol. 35, pp. 959–978, 2014.
  • Z. Zhang, W. Chen, Z. J. Zhu, and Y. L. Li, Numerical Exploration of Turbulent Natural-Convection in a DASC (i.e., Differentially-Heated Air-Filled Square Cavity) at Ra = 5.33×109, Heat Mass Transfer, vol. 50, pp. 1737–1749, 2014.
  • N. Uddin, S. O. Neumann, B. Weigand, and B. A. Younis, Large Eddy Simulation and Heat Flux Modeling in a Turbulent Impinging Jet, Numer. Heat Transfer, A: Appl., vol. 55, pp. 906–930, 2009.
  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Chap. III, Oxford University Press, Cambridge, 1961.
  • J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall, Mechanisms of Generating Coherent Packets of Hairpin Vortices in Channel Flow, J. Fluid Mech., vol. 387, pp. 353–396, 1999.
  • B. Ganapathisubramani, E. K. Longmire, and I. Marusic, Experimental Investigation of Vortex Properties in a Turbulent Boundary Layer, Phys. Fluids, vol. 18, p. 155105, 2006.
  • C. T. Lin and Z. J. Zhu, Direct Numerical Simulation of Incompressible Flows in a Zero-Pressure Gradient Turbulent Boundary Layer, Adv. Appl. Math. Mech., vol. 2, pp. 503–517, 2010.
  • D. K. Lilly, The Representation of Small-Scale Turbulence in Numerical Simulation Experiments, in H. H. Goldstine (ed.), Proc. of IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, New York, pp. 195–210, 1967.
  • I. Orlanski, A Simple Boundary Condition for Unbounded Flows, J. Comput. Phys., vol. 21, pp. 251–269, 1976.
  • H. X. Yang, T. Y. Chen, and Z. J. Zhu, Numerical Study of Forced Turbulent Heat Convection in a Straight Square Duct, Int. J. Heat Mass Transfer, vol. 52, pp. 3128–3136, 2009.
  • W. Q. Tao, Numerical Heat Transfer, Xi’an Jiantong University Press, P.R. China, pp. 195–251, 2001 (in Chinese).
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980.
  • F. H. Harlow and J. E. Welch, Numerical Calculation of Time Dependent Viscous Incompressible flow of Fluid with Free Surfaces, Phys. Fluids, vol. 8, pp. 2182–2188, 1965.
  • G. Groetzbach, Direct Numerical Simulation of Laminar and Turbulent Benard Convection, J. Fluid Mech., vol. 119, pp. 27–53, 1982.
  • M. Manhart, A Zonal Grid Algorithm for DNS of Turbulent Boundary Layers, Comput. Fluids, vol. 33, pp. 435–461, 2004.
  • K. Khanafer, K. Vafai, and M. Lightstone, Mixed Convection Heat Transfer in Two Dimensional Open-Ended Enclosures, Int. J. Heat Mass Transfer, vol. 45, pp. 5171–5190, 2002.
  • E. Papanicolaou and Y. Jaluria, Transition to a Periodic Regime in Mixed Convection in a Square Cavity, J. Fluid Mech., vol. 239, pp. 489–509, 1992.
  • N. Nikitin, Finite-Difference Method for Incompressible Navier-Stokes Equations in Arbitrary Orthogonal Curvilinear Coordinates, J. Comput. Phys., vol. 217, pp. 759–781, 2006.
  • M. J. Ni and M. A. Abdou, A Bridge between Projection Methods and Simple Type Methods for Incompressible Navier-Stokes Equations, Int. J. Numer. Meth. Eng., vol. 72, pp. 1490–1512, 2007.
  • Z. F. Tian, X. Liang, and P. X. Yu, A Higher Order Compact Finite Difference Algorithm for Solving the Incompressible Navier-Stokes Equations, Int. J. Numer. Meth. Eng., vol. 88, pp. 511–532, 2011.
  • M. ElAbdallaoui, M. Hasnaoui, and A. Amahmid, Lattice-Bolzmann Modeling of Natural Convection between a Square Outer Cylinder, and an Inner Isoscales Triangular Heating Body, Numer. Heat Transfer, A: Appl., vol. 66, no. 9, pp. 1076–1096, 2014.
  • Z. Wang, Z. Huang, W. Zhang, and G. Xi, A Multidomain Chebyshev Pseudo-Spectral Method for Fluid Flow, and Heat Transfer from Square Cylinders, Numer. Heat Transfer, B: Fundam., vol. 68, no. 3, pp. 224–238, 2015.
  • F. X. Trias, A. Gorobets, and A. Oliva, A Simple Approach to Discretize the Viscous Terms with Spatially Varying (Eddy-) Viscosity, J. Comput. Phys., vol. 253, pp. 405–417, 2013.
  • D. L. Brown, R. Cortez, and M. L. Minion, Accurate Projection Methods for the Incompressible Navier-Stokes Equations, J. Comput. Phys., vol. 168, pp. 464–499, 2001.
  • Z. J. Zhu and H. X. Yang, Numerical Investigation of Transient Laminar Natural Convection of Air in a Tall Cavity, Heat Mass Transfer, vol. 39, pp. 579–587, 2003.
  • T. J. Baker, Potential Flow Calculation by the Approximate Factorization Method, J. Comput. Phys., vol. 42, pp. 1–19, 1981.
  • H. A. Van Der Vorst, BiCGSTAB: A Fast and Smoothly Converging Variant of BICG for the Solution of Non-Symmetric Linear System, SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., vol. 13, pp. 631–644, 1992.
  • N. N. Smirnov, V. B. Betelin, R. M. Shagaliev, V. F. Nikitin, I. M. Belyakov, Yu. N. Deryuguin, S. V. Aksenov, and D. A. Korchazhkin, Hydrogen Fuel Rocket Engines Simulation using LOGOS Code, Int. J. Hydrogen Energy, vol. 39, pp. 10748–10756, 2014.
  • V. B. Betelin, R. M. Shagaliev, S. V. Aksenov, I. M. Belyakov, Yu. N. Deryuguin, D. A. Korchazhkin, A. S. Kozelkov, V. F. Nikitin, A. V. Sarazov, and D. K. Zelenskiy, Mathematical Simulation of Hydrogen-Oxygen Combustion in Rocket Engines using LOGOS Code, Acta Astronaut., vol. 96, pp. 53–64, 2014.
  • Z. J. Zhu and H. X. Yang, Discrete Hilbert Transformation and Its Application to Estimate the Wind Speed in Hong Kong, J. Wind Eng. Ind. Aerodynam., vol. 90, pp. 9–18, 2002.
  • H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, pp. 146–195, 1974.
  • U. Frisch, The Legacy of A. N. Kolmogorov, in Turbulence, Cambridge University Press, pp. 81–88, 1995.
  • M. Mihiev, Fundamentals of Heat Transfer, National-Thermodynamic Publisher, Moscow, Russia, pp. 1–392, 1956 (In Russian).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.