Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 11
273
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of the effect of magnetic field on melting of solid gallium in a bottom-heated rectangular cavity using the lattice Boltzmann method

, , &
Pages 1263-1279 | Received 20 May 2015, Accepted 23 Jun 2015, Published online: 02 May 2016

References

  • T. X. Li, M. Hassan, and K. Kuwana, Performance of Secondary Aluminum Melting: Thermodynamic Analysis and Plant-Site Experiments, Energy, vol. 31, pp. 1769–1779, 2006.
  • T. Kousksou, M. Mahdaoui, and A. Ahmed, Melting over a Wavy Surface in a Rectangular Cavity Heated from Below, Energy, vol. 64, pp. 212–219, 2014.
  • B. Zalba, J. M. Marín, and L. F. Cabeza, Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications, Appl. Therm. Eng., vol. 23, pp. 251–283, 2003.
  • A. Sharma, V. V. Tyagi, and C. R. Chen, Review on Thermal Energy Storage with Phase Change Materials and Applications, Renew. Sustain. Energy Rev., vol. 13, pp. 318–345, 2009.
  • H. Zhang, M. Charmchi, and D. Veilleux, Numerical and Experimental Investigation of Melting in the Presence of a Magnetic Field: Simulation of Low-Gravity Environment, J. Heat Trans. – T. ASME, vol. 129, pp. 568–576, 2007.
  • Y. Asako, E. Goncalves, and M. Faghri, Numerical Solution of Melting Processes for Fixed and Unfixed Phase Change Material in the Presence of Magnetic Field – Simulation of Low-Gravity Environment, Numer. Heat Trans. A – Appl., vol. 42, pp. 565–583, 2002.
  • G. S. Dulikravich, V. Ahuja, and S. Lee, Modeling 3-Dimensional Solidification with Magnetic-Fields and Reduced Gravity, Int. J. Heat Mass Transfer, vol. 37, pp. 837–853, 1994.
  • B. H. Dennis and G. S. Dulikravich, Magnetic Field Suppression of Melt Flow in Crystal Growth, Int. J. Heat Fluid Flow, vol. 23, pp. 269–277, 2002.
  • R. Bessaih and S. Bouabdallah, Numerical Study of Oscillatory Natural Convection during Solidification of a Liquid Metal in a Rectangular Enclosure with and without Magnetic Field, Numer. Heat Trans. A – Appl., vol. 54, pp. 331–348, 2008.
  • S. Bouabdallah and R. Bessaih, Effect of Magnetic Field on 3D Flow and Heat Transfer during Solidification from a Melt, Int. J. Heat Fluid Flow, vol. 37, pp. 154–166, 2012.
  • S. Chen and G. D. Doolen, Lattice Boltzmann Method for Fluid Flows, Annu. Rev. Fluid Mech., vol. 30, pp. 329–364, 1998.
  • C. K. Aidun and J. R. Clausen, Lattice-Boltzmann Method for Complex Flows, Annu. Rev. Fluid Mech., vol. 42, pp. 439–472, 2010.
  • W. N. Zhou and Y. Y. Yan, Numerical Investigation of the Effects of a Magnetic Field on Nanofluid Flow and Heat Transfer by the Lattice Boltzmann Method, Numer. Heat Trans. A – Appl., vol. 68, pp. 1–16, 2015.
  • Y. J. Sun and X. B. Zhang, Analysis of Transient Conduction and Radiation Problems Using the Lattice Boltzmann and Discrete Ordinates Methods, Numer. Heat Trans. A – Appl., vol. 68, pp. 619–637, 2015.
  • S. Sharafatmandjoor, N. A. C. Sidik, and F. Sabetghadam, Analysis of the Applicability of the Lattice Boltzmann Method in Targeting a Chaotic Flame Front Model, Numer. Heat Trans. A – Appl., vol. 67, pp. 597–603, 2015.
  • S. Biswas, P. Sharma, B. Mondal, and G. Biswas, Analysis of Mixed Convective Heat Transfer in a Ribbed Channel Using the Lattice Boltzmann Method, Numer. Heat Trans. A – Appl., vol. 68, pp. 75–98, 2015.
  • M. Jourabian, M. Farhadi, K. Sedighi, A. A. R. Darzi, and Y. Vazifeshenas, Melting of Nepcm within a Cylindrical Tube: Numerical Study Using the Lattice Boltzmann Method, Numer. Heat Trans. A – Appl., vol. 61, pp. 929–948, 2012.
  • W. Miller and S. Succi, A Lattice Boltzmann Model for Anisotropic Crystal Growth from Melt, J. Stat. Phys., vol. 107, nos. 1–2, pp. 173–186, 2002.
  • I. Rasin, W. Miller, and S. Succi, Phase-Field Lattice Kinetic Scheme for the Numerical Simulation of Dendritic Growth, Phys. Rev. E, vol. 72, 066705, 2005.
  • D. Chatterjee and S. Chakraborty, An Enthalpy-Based Lattice Boltzmann Model for Diffusion Dominated Solid-Liquid Phase Transformation, Phys. Lett. A, vol. 341, pp. 320–330, 2005.
  • W. S. Jiaung, J. R. Ho, and C. P. Kuo, Lattice Boltzmann Method for the Heat Conduction Problem with Phase Change, Numer. Heat Trans. B – Fund., vol. 39, pp. 167–187, 2001.
  • C. Huber, A. Parmigiani, and B. Chopard, Lattice Boltzmann Model for Melting with Natural Convection, Int. J. Heat Fluid Flow, vol. 29, pp. 1469–1480, 2008.
  • Z. Li, M. Yang, and Y. W. Zhang, A Hybrid Lattice Boltzmann and Finite-Volume Method for Melting with Convection, Numer. Heat Trans. B – Fund., vol. 66, pp. 307–325, 2014.
  • M. Eshraghi and S. D. Felicelli, An Implicit Lattice Boltzmann Model for Heat Conduction with Phase Change, Int. J. Heat Mass Transfer, vol. 55, pp. 2420–2428, 2012.
  • Y. Feng, H. Li, and L. Li, Numerical Investigation on the Melting of Nanoparticle-Enhanced Phase Change Materials (NEPCM) in a Bottom-Heated Rectangular Cavity Using Lattice Boltzmann Method, Int. J. Heat Mass Transfer, vol. 81, pp. 415–425, 2015.
  • D. Chatterjee and S. Chakraborty, A Hybrid Lattice Boltzmann Model for Solid-Liquid Phase Transition in Presence of Fluid Flow, Phys. Lett. A, vol. 351, pp. 359–367, 2006.
  • S. Chakraborty and D. Chatterjee, An Enthalpy-Based Hybrid Lattice-Boltzmann Method for Modelling Solid-Liquid Phase Transition in the Presence of Convective Transport, J. Fluid Mech., vol. 592, pp. 155–175, 2007.
  • D. Chatterjee, An Enthalpy-Based Thermal Lattice Boltzmann Model for Non-Isothermal Systems, EPL – Europhys. Lett., vol. 86, 14004, 2009.
  • D. L. Veilleux, E. Goncalves, and M. Faghri, Phase Change in a Three-Dimensional Rectangular Cavity under Electromagnetically Simulated Low-Gravity – Side Wall Heating, Int. J. Numer. Methods Heat Fluid Flow, vol. 15, pp. 710–739, 2005.
  • R. Z. Huang, H. Y. Wu, and P. Cheng, A New Lattice Boltzmann Model for Solid-Liquid Phase Change, Int. J. Heat Mass Transfer, vol. 59, pp. 295–301, 2013.
  • Z. L. Guo, C. G. Zheng, and B. C. Shi, Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method, Phys. Rev. E, vol. 65, 046308, 2002.
  • D. R. Noble and J. R. Torczynski, A Lattice-Boltzmann Method for Partially Saturated Computational Cells, Int. J. Mod. Phys. C, vol. 9, pp. 1189–1201, 1998.
  • Z. L. Guo, C. G. Zheng, and B. C. Shi, An Extrapolation Method for Boundary Conditions in Lattice Boltzmann Method, Phys. Fluids, vol. 14, pp. 2007–2010, 2002.
  • G. H. Tang, W. Q. Tao, and Y. L. He, Thermal Boundary Condition for the Thermal Lattice Boltzmann Equation, Phys. Rev. E, vol. 72, 016703, 2005.
  • T. Tagawa and H. Ozoe, The Natural Convection of Liquid Metal in a Cubical Enclosure with Various Electro-Conductivities of the Wall under the Magnetic Field, Int. J. Heat Mass Transfer, vol. 41, pp. 1917–1928, 1998.
  • T. Tagawa and H. Ozoe, Enhancement of Heat Transfer Rate by Application of a Static Magnetic Field during Natural Convection of Liquid Metal in a Cube, J. Heat Trans. – T. ASME, vol. 119, pp. 265–271, 1997.
  • J. Mencinger, Numerical Simulation of Melting in Two-Dimensional Cavity Using Adaptive Grid, J. Comput. Phys., vol. 198, pp. 243–264, 2004.
  • C. Beckermann and R. Viskanta, Effect of Solid Subcooling on Natural Convection Melting of a Pure Metal, J. Heat Trans. – T. ASME, vol. 111, pp. 416–424, 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.