Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 3
159
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Particle–fluid interactivity reduces buoyancy-driven thermal transport in nanosuspensions: A multi-component Lattice Boltzmann approach

, , &
Pages 260-281 | Received 01 Oct 2015, Accepted 09 Feb 2016, Published online: 13 Jul 2016

References

  • S. K. Das, S. U. S. Choi, and H. E. Patel, Heat Transfer in Nanofluids—A Review, Heat Transfer Eng., vol. 27, no. 10, pp. 3–19, 2006.
  • J. Buongiorno, D. C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y. V. Tolmachev, P. Keblinski, L.-w. Hu, and J. L. Alvarado, A Benchmark Study on the Thermal Conductivity of Nanofluids, J. Appl. Phys., vol. 106, no. 9, p. 094312, 2009.
  • H. Patel, T. Sundararajan, and S. Das, An Experimental Investigation into the Thermal Conductivity Enhancement in Oxide and Metallic Nanofluids, J. Nanopart Res., vol. 12, no. 3, pp. 1015–1031, 2010.
  • N. V. Sastry, A. Bhunia, T. Sundararajan, and S. K. Das, Predicting the Effective Thermal Conductivity of Carbon Nanotube Based Nanofluids, Nanotechnology, vol. 19, no. 5, p. 055704, 2008.
  • P. Dhar, S. S. Gupta, S. Chakraborty, A. Pattamatta, and S. K. Das, The Role of Percolation and Sheet Dynamics During Heat Conduction in Poly-Dispersed Graphene Nanofluids, Appl. Phys. Lett., vol. 102, no. 16, p. 163114, 2013.
  • K. B. Anoop, T. Sundararajan, and S. K. Das, Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region, Int. J. Heat Mass Transfer, vol. 52, no. 9–10, pp. 2189–2195, 2009.
  • S. Kakaç and A. Pramuanjaroenkij, Review of Convective Heat Transfer Enhancement with Nanofluids, Int. J. Heat Mass Transfer, vol. 52, no. 13, pp. 3187–3196, 2009.
  • J. Lee, P. E. Gharagozloo, B. Kolade, J. K. Eaton, and K. E. Goodson, Nanofluid Convection in Microtubes, J. Heat Transfer, vol. 132, no. 9, p. 092401, 2010.
  • D. Wen and Y. Ding, Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions, Int. J. Heat Mass Transfer, vol. 47, no. 24, pp. 5181–5188, 2004.
  • Y. Xuan and Q. Li, Investigation on Convective Heat Transfer and Flow Features of Nanofluids, J. Heat Transfer, vol. 125, no. 1, pp. 151–155, 2003.
  • N. Putra, W. Roetzel, and S. Das, Natural Convection of Nano-Fluids, Heat Mass Transfer, vol. 39, no. 8–9, pp. 775–784, 2003.
  • D. Wen and Y. Ding, Formulation of Nanofluids for Natural Convective Heat Transfer Applications, Int. J. Heat Fluid Flow, vol. 26, pp. 855–865, 2005.
  • A. G. Nnanna, Experimental Model of Temperature-Driven Nanofluid, J. Heat Transfer, vol. 129, p. 697, 2006.
  • C. Ho, W. Liu, Y. Chang, and C. Lin, Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study, Int. J. Therm. Sci., vol. 49, pp. 1345–1353, 2010.
  • Y. Hu, Y. He, S. Wang, Q. Wang, and H. I. Schlaberg, Experimental and Numerical Investigation on Natural Convection Heat Transfer of TiO2–Water Nanofluids in a Square Enclosure, J. Heat Transfer, vol. 136, p. 022502, 2013.
  • K. Khanafer, K. Vafai, and M. Lightstone, Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, Int. J. Heat Mass Transfer, vol. 46, 2003.
  • E. B. Ougut, Natural Convection of Water-Based Nanofluids in an Inclined Enclosure with a Heat Source, Int. J. Therm. Sci., vol. 48, p. 2063. 2009.
  • H. F. Oztop, E. Abu-Nada, Y. Varol, and K. Al-Salem, Computational Analysis of Non-Isothermal Temperature Distribution on Natural Convection in Nanofluid Filled Enclosures, Superlattices Microstruct., vol. 49, p. 453, 2011.
  • E. Abu-Nada and A. J. Chamkha, Effect of Nanofluid Variable Properties on Natural Convection in Enclosures Filled with a CuO–EG–Water Nanofluid, Int. J. Therm. Sci., vol. 49, p. 2339, 2010.
  • D. Tzou, Thermal Instability of Nanofluids in Natural Convection, Int. J. Heat Mass Transfer, vol. 51, p. 2967, 2008.
  • J. Buongiorno, Convective Transport in Nanofluids, Trans. ASME J. Heat Transfer, vol. 128, p. 240, 2006.
  • S. K. Choi, S. O. Kim, and T. H. Lee, Computation of the Natural Convection of Nanofluid in a Square Cavity with Homogeneous and Nonhomogeneous Models, Numer. Heat Transfer, Part A Appl., vol. 65, p. 287, 2014.
  • M. Corcione, Heat Transfer Features of Buoyancy-Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls, Int. J. Therm. Sci., vol. 49, p. 1536, 2010.
  • K. S. Hwang, J.-H. Lee, and S. P. Jang, Buoyancy-Driven Heat Transfer of Water-Based Al 2 O 3 Nanofluids in a Rectangular Cavity, Int. J. Heat Mass Transfer, vol. 50, p. 4003, 2007.
  • Y. Xuan and Z. Yao, Lattice Boltzmann Model for Nanofluids, Heat mass Transfer, vol. 41, p. 199, 2005.
  • Y. Guo, D. Qin, S. Shen, and R. Bennacer, Nanofluid Multi-Phase Convective Heat Transfer in Closed Domain: Simulation with Lattice Boltzmann Method, Int. Commun. Heat Mass Transfer, vol. 39, p. 350, 2012.
  • C. Qi, Y. He, S. Yan, F. Tian, and Y. Hu, Lattice Boltzmann Simulation of Alumina-Water Nanofluid in a Square Cavity, Nanoscale Res. Lett., vol. 8, no. 1, 2013.
  • S. Savithiri, A. Pattamatta, and S. K. Das, Scaling Analysis for the Investigation of Slip Mechanisms in Nanofluids, Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–15, 2013.
  • C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. Choi, Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid Thermal Conductivity Enhancement, Appl. Phys. Lett., vol. 87, pp. 153107, 2005.
  • P. Dhar, M. H. D. Ansari, S. S. Gupta, V. M. Siva, T. Pradeep, A. Pattamatta, and S. K. Das, Percolation Network Dynamicity and Sheet Dynamics Governed Viscous Behavior of Polydispersed Graphene Nanosheet Suspensions, J. Nanopart Res., vol. 15, pp. 1–12, 2013.
  • A. Bejan Convection Heat Transfer, John Wiley & Sons, Inc., 2013.
  • J. M. Buick and C. A. Greated, Gravity in a Lattice Boltzmann Model, Phys. Rev. E, vol. 61, p. 5307, 2000.
  • S. Wiegand, Thermal Diffusion in Liquid Mixtures and Polymer Solutions, J. Phys. Condens Matter, vol. 16, p. 357, 2004.
  • D. Lusebrink, M. Yang, and M. Ripoll, Thermophoresis of Colloids by Mesoscale Simulations, J. Phy Condensed Matter, vol. 24, p. 284132, 2012.
  • G. D. V. Davis, Natural-Convection of Air in a Square Cavity-a Bench-Mark Numerical-Solution, Int. J. Numer. Methods Fluids, vol. 3, p. 249, 1983.
  • H. Dixit and V. Babu, Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method, Int. J. Heat Mass Transfer, vol. 49, p. 727, 2006.
  • F. H. Lai and Y. T. Yang, Lattice Boltzmann Simulation of Natural Convection Heat Transfer of Al2O3/Water Nanofluids in a Square Enclosure, Int. J. Therm. Sci., vol. 50, p. 1930, 2011.
  • D. A. Nield and A. V. Kuznetsov, Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid, Int. J. Heat Mass Transfer, vol. 52, no. 25–26, pp. 5796–5801, 2009.
  • W. N. Zhou and Y. Y. Yan, Numerical Investigation on the Effects of Magnetic Field on Nanofluid Flow and Heat Transfer Using Lattice Boltzmann Method, Numer. Heat Transfer A, vol. 68, no. 1, pp. 1–16, 2015.
  • G. R. Kefayati, Simulation of Ferrofluid Heat Dissipation Effect on Natural Convection at an Inclined Cavity Filled with Kerosene/Cobalt Using Lattice Boltzmann Method, Numer. Heat Transfer A, vol. 65, no. 6, pp. 509–530, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.