Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 3
167
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Temperature effects on the enhanced or deteriorated buoyancy-driven heat transfer in differentially heated enclosures filled with nanofluids

, &
Pages 223-241 | Received 01 Oct 2015, Accepted 09 Feb 2016, Published online: 13 Jul 2016

References

  • N. Putra, W. Roetzel, and S. K. Das, Natural convection of nano-fluids, Heat Mass Transfer, vol. 39, pp. 775–784, 2003.
  • D. Wen and Y. Ding, Formulation of nanofluids for natural convective heat transfer applications, Int. J. Heat Fluid Flow, vol. 26, pp. 855–864, 2005.
  • D. Wen and Y. Ding, Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids), IEEE Trans. Nanotechnol., vol. 5, pp. 220–227, 2006.
  • A. G. A. Nnanna, Experimental model of temperature-driven nanofluid, J. Heat Transfer, vol. 129, pp. 697–704, 2007.
  • B. H. Chang, A. F. Mills, and E. Hernandez, Natural convection of microparticle suspensions in thin enclosures, Int. J. Heat Mass Transfer, vol. 51, pp. 1332–1341, 2008.
  • C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, Int. J. Thermal Sciences, vol. 49, pp. 1345–1353, 2010.
  • Y. Hu, Y. He, S. Wang, Q. Wang, and H. I. Schlaberg, Experimental and numerical investigation on natural convection heat transfer of TiO2−water nanofluids in a square enclosure, J. Heat Transfer −Trans. ASME, vol. 136, pp. 022502, 2014.
  • S. Z. Heris, M. B. Pour, O. Mahian, and S. Wongwises, A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity, Int. J. Heat Mass Transfer, vol. 73, pp. 231–238, 2014.
  • Y. Hu, Y. He, C. Qi, B. Jiang, and H. I. Schlaberg, Experimental and numerical study of natural convection in a square enclosure filled with nanofluid, Int. J. Heat Mass Transfer, vol. 78, pp. 380–392, 2014.
  • R. Roslan, H. Saleh, and I. Hashim, Buoyancy-driven heat transfer in nanofluid-filled trapezoidal enclosure with variable thermal conductivity and viscosity, Num. Heat Transfer A, vol. 60, pp. 867–882, 2011.
  • H. Sajjadi, M. Gorji, G. H. R. Kefayati, and D. D. Ganji, Lattice Boltzmann simulation of turbulent natural convection in tall enclosures using Cu/water nanofluid, Num. Heat Transfer A, vol. 62, pp. 512–530, 2012.
  • M. Alipanah, A. A. Ranjbar, and A. Zahmatkesh, Numerical study of natural convection in vertical enclosures utilizing nanofluid, Adv. Mech. Eng., 392610, 2014.
  • P. Ternik and R. Rudolf, Conduction and convection heat transfer characteristics of water-based Au nanofluids in a square cavity with differentially heated side walls subjected to constant temperatures, Thermal Sciences, vol. 18, pp. S189–S200, 2014.
  • G. Wang, X. Meng, M. Zeng, H. Ozoe, and Q. W. Wang, Natural convection heat transfer of copper-water nanofluid in a square cavity with time-periodic boundary temperature, Heat Transfer Eng., vol. 35, pp. 630–640, 2014.
  • D. H. Fontes, D. D. dos Santos, E. L. Martinez Padilla, and E. P. Bandarra Filho, Two numerical modelings of free convection heat transfer using nanofluids inside a square enclosure, Mech. Res. Comm., vol. 66, pp. 34–43, 2015.
  • H. Khorasanizadeh, M. M. Fakhari, and S. P. Ghaffari, Effects of properties variations of Al2O3−EG−water nanofluid on natural convection heat transfer in a two-dimensional enclosure: Enhancement or deterioration?, Heat Mass Transfer, vol. 51, pp. 671–684, 2015.
  • P. Ternik, Conduction and convection heat transfer characteristics of water−Au nanofluid in a cubic enclosure with differentially heated side walls, Int. J. Heat Mass Transfer, vol. 80, pp. 368–375, 2015.
  • X. Meng and Y. Li, Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid, Nanoscale Res. Lett., vol. 10, pp. 142–151, 2015.
  • M. B. Ben Hamida and K. Charrada, Natural convection heat transfer in an enclosure filled with an ethylene glycol−copper nanofluid under magnetic fields, Num. Heat Transfer A, vol. 67, pp. 902–920, 2015.
  • V. M. Job and S. R. Gunakala, Unsteady MHD free convection nanofluid flows within a wavy trapezoidal enclosure with viscous and Joule dissipation effects, Num. Heat Transfer A, vol. 69, pp. 421–443, 2016.
  • M. Corcione, M. Cianfrini, and A. Quintino, Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties, Int. J. Thermal Sciences, vol. 71, pp. 182–195, 2013.
  • G. S. McNab and A. Meisen, Thermophoresis in liquids, J. Colloid Interface Science, vol. 44, pp. 339–346, 1973.
  • F. Garoosi, S. Garoosi, and K. Hooman, Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model, Powder Technology, vol. 268, pp. 279–292, 2014.
  • S. K. Choi, S. O. Kim, T. H. Lee, and D. Hahn, Computation of the natural convection of nanofluid in a square cavity with homogeneous and nonhomogeneous models, Num. Heat Transfer A, vol. 65, pp. 287–301, 2014.
  • S. Savithiri, A. Pattamatta, and S. K. Das, A single-component nonhomogeneous lattice Boltzmann model for natural convection in Al2O3/water nanofluid, Num. Heat Transfer A, vol. 68, pp. 1106–1124, 2015.
  • H. Brenner and J. R. Bielenberg, A continuum approach to phoretic motions: Thermophoresis, Physica A, vol. 355, pp. 251–273, 2005.
  • M. Ahmed and M. Eslamian, Natural convection in a differentially-heated square enclosure filled with a nanofluid: Significance of the thermophoresis force and slip/drift velocity, Int. Comm. Heat Mass Transfer, vol. 58, pp. 1–11, 2014.
  • M. Ahmed and M. Eslamian, Numerical simulation of natural convection of a nanofluid in an inclined heated enclosure using two-phase Lattice Boltzmann Method: Accurate effects of thermophoresis and Brownian forces, Nanoscale Res. Lett., vol. 10, pp. 296, 2015.
  • H. Aminfar and M. R. Haghgoo, Brownian motion and thermophoresis effects on natural convection of alumina-water nanofluid, J. Mech. Eng. Science, vol. 227, pp. 100–110, 2012.
  • J. C. Giddings, P. M. Shinudu, and S. N. Semenov, Thermophoresis of metal particles in a liquid, J. Colloid Interface Science, vol. 176, pp. 454–458, 1995.
  • K. J. Zhang, M. E. Briggs, R. W. Gammon, J. V. Sengers, and J. F. Douglas, Thermal and mass diffusion in a semidilute good solvent-polymer solution, J. Chem. Phys., vol. 111, pp. 2270–2282, 1999.
  • J. Rauch, M. Hartung, A. F. Privalov, and W. Köhler, Correlation between thermal diffusion, and solvent self-diffusion in semidilute, and concentrated polymer solutions, J. Chem. Phys., vol. 126, 214901, 2007.
  • M. Corcione, M. Cianfrini, and A. Quintino, Enhanced natural convection heat transfer of nanofluids in enclosures with two adjacent walls heated and the two opposite walls cooled, Int. J. Heat Mass Transfer, vol. 88, pp. 902–913, 2015.
  • J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer −Trans. ASME, vol. 128, pp. 240–250, 2006.
  • S. K. Das, N. Putra, and W. Roetzel, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer, vol. 46, pp. 851–862, 2003.
  • R. Prasher, D. Song, J. Wang, and P. Phelan, Measurements of nanofluid viscosity, and its implications for thermal applications, Appl. Phys. Lett., vol. 89, 133108, 2006.
  • Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, vol. 50, pp. 2272–2281, 2007.
  • H. Chen, Y. Ding, Y. He, and C. Tan, Rheological behaviour of ethylene glycol based titania nanofluids, Chem. Phys. Lett., vol. 444, pp. 333–337, 2007.
  • J. Chevalier, O. Tillement, and F. Ayela, Rheological properties of nanofluids flowing through microchannels, Appl. Phys. Lett., vol. 91, 233103, 2007.
  • D. Cabaleiro, M. J. Pastoriza-Gallego, M. M. Piñero, and L. Lugo, Characterization, and measurements of thermal conductivity, density, and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1,2-diol + water) mixture, J. Chem. Thermodynamics, vol. 58, pp. 405–415, 2013.
  • A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (in German), Ann. Phys., vol. 17, pp. 549–560, 1905.
  • M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Convers. Manag., vol. 52, pp. 789–793, 2011.
  • P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, vol. 45, pp. 855–863, 2002.
  • B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, vol. 11, pp. 151–170, 1998.
  • S. Q. Zhou and R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Appl. Phys. Lett., vol. 92, 093123, 2008.
  • J. P. Van Doormaal and G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Num. Heat Transfer, vol. 11, pp. 147–163, 1984.
  • S. V. Patankar and D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer, vol. 15, pp. 1787–1797, 1972.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Co., Washington, DC, 1980.
  • B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comp. Meth. in Appl. Mech. Engng., vol. 19, pp. 59–78, 1979.
  • G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Num. Meth. Fluids, vol. 3, pp. 249–264, 1983.
  • H. S. Mahdi and R. B. Kinney, Time-dependent natural convection in a square cavity: application of a new finite volume method, Int. J. Num. Meth. Fluids, vol. 11, pp. 57–86, 1990.
  • M. Hortmann, M. Peric, and G. Scheuerer, Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Num. Meth. Fluids, vol. 11, pp. 189–207, 1990.
  • D. C. Wan, B. S. V. Patnaik, and G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Num. Heat Transfer, vol. 40, pp. 199–228, 2001.
  • A. Bejan, Convection Heat Transfer, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.
  • F. P. Incropera, D. P. Dewitt, T. L. Bergman, A., and S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.
  • C. Béghein, F. Haghigat, and F. Allard, Numerical study of double-diffusive natural convection in a square cavity, Int. J. Heat Mass Transfer, vol. 35, pp. 833–846, 1992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.