Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 4
326
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model

, , &
Pages 432-445 | Received 20 Dec 2015, Accepted 23 Feb 2016, Published online: 13 Jul 2016

References

  • D. V. Davis, Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution, Int. J. Numer. Methods Fluids, vol. 3, pp. 249–264, 1983.
  • P. LeQuéré, Accurate Solution to the Square Thermally Driven Cavity at High Rayleigh Number, Comput. Fluids, vol. 20, pp. 29–41, 1991.
  • S. Ostrach, Natural Convection in Enclosures, Adv. Heat Transf., vol. 8, pp. 161–227, 1972.
  • R. L. Frederick and A. Valencia, Heat Transfer in a Square Cavity with a Conducting Partition on its hot wall, Int. Commun. Heat Mass Transf., vol. 16, pp. 347–354, 1989.
  • R. Scozia and R. L. Frederick, Natural Convection in Slender Cavities with Multiple fins Attached on an Active Wall, Numer. Heat Transf. Part A, vol. 20, pp. 127–158, 1991.
  • G. N. Facas, Natural Convection in a Cavity with fins Attached to both Vertical Walls, J. Thermophys. Heat Transf., vol. 7, pp. 555–560, 1993.
  • A. Nag, A. Sarkar, and V. M.K. Sastri, Natural Convection in a Differentially Heated Square Cavity with a Horizontal Partition Plate on the hot Wall, Comput. Methods Appl. Mech. Eng., vol. 110, pp. 143–156, 1993.
  • E. K. Lakhal, M. Hasnaoui, E. Bilgen, and P. Vasseur, Natural Convection in Inclined Rectangular Enclosures with Perfectly Conducting Fins Attached on the Heated Wall, Heat Mass Transf., vol. 32, pp. 365–373, 1997.
  • K. Khanafer, A. AlAmiri, and J. Bull, Laminar Natural Convection Heat Transfer in a Differentially Heated Cavity with a thin Porous fin Attached to the Hot Wall, Int. J. Heat Mass Transf., vol. 87, pp. 59–70, 2015.
  • X. Shi and J. M. Khodadadi, Laminar Natural Convection Heat Transfer in a Differentially Heated Square Cavity due to a thin fin on the Hot Wall, ASME J. Heat Transf., vol. 125, pp. 623–634, 2003.
  • P. Oosthuizen, and J. T. Paul Free Convection Heat Transfer in a Cavity Fitted with a Horizontal Plate on the Cold Wall, in: S. M. Shenkman, et al. (eds.), Advances in Enhanced Heat Transfer, ASME-HTD, vol. 43, pp. 101–107, 1985.
  • E. Bilgen, Natural Convection in Cavities with a thin fin on the Hot Wall, Int. J. Heat Mass Transf., vol. 48, pp. 3493–3505, 2005.
  • A. Ben-Nakhi and A. Chamkha, Conjugate Natural Convection in a Square Enclosure with inclined thin fin of Arbitrary Length, Int. J. Therm. Sci. Int. J. Therm. Sci., vol. 46, pp. 467–478, 2007.
  • A. Ben-Nakhi and A. J. Chamkha, Effect of Length and Inclination of a Thin Fin on Natural Convection in a Square Enclosure, Numer. Heat Transf., Part A, vol. 50, pp. 381–399, 2006.
  • A. Ben-Nakhi and A. J. Chamkha, Conjugate Natural Convection Around a Finned Pipe in a Square Enclosure with Internal Heat Generation, Int. J. Heat Mass Transf., vol. 50, pp. 2260–2271, 2007.
  • N. Ben Cheikh, A. J. Chamkha, and B. Ben Beya, Effect of Inclination on Heat Transfer and Fluid Flow in a Finned Enclosure Filled with a Dielectric Liquid, Numer. Heat Transf. Part A, vol. 56, pp. 286–300, 2009.
  • A. J. Chamkha, M. A. Mansour, and S. E. Ahmad, Double-Diffusive Natural Convection in Inclined Finned Triangular Porous Enclosures in the Presence of Heat Generation/Absorption Effects, Heat Mass Transf., vol. 46, pp. 757–768, 2010.
  • Y. Varol, H. F. Oztop, F. O. Ozgen, and A. Koca, Experimental and Numerical Study on Laminar Natural Convection in a Cavity Heated from Bottom due to an inclined fin, Heat Mass Transf., vol. 48, pp. 61–70, 2012.
  • A. C. Baytas and I. Pop, Free Convection in a Square Porous Cavity using a Thermal Nonequilibrium Model, Int. J. Thermal Sci., vol. 41, pp. 861–870, 2002.
  • D. B. Ingham and I. Pop (Eds), Transport Phenomena in Porous Media III, Elsevier, Oxford, 2005.
  • K. Vafai Handbook of Porous Media, 2nd edn. Taylor and Francis, New York, 2005.
  • L. Zhang, Y. Ding, M. Povey, and D. York, ZnO Nanofluids–a Potential Antibacterial Agent, Progress in Natural Sci., vol. 18, pp. 939–944, 2008.
  • K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto, Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark Conditions, Ceramics Int., vol. 36, pp. 497–506, 2010.
  • C. Choi, H. S. Yoo, and J. M. Oh, Preparation and Heat Transfer Properties of Nanoparticle-Intransformer oil Dispersions as Advanced Energy-Efficient Coolants, Current Appl Physics, vol. 8, pp. 710–712, 2008.
  • J. L. Davidson Nanofluid for Cooling Enhancement of Electrical Power Equipment, Vanderbilt University-Department of Electrical Engineering, Nashville, TN, www.vanderbilt.edu/technology transfer Bulletin, 2009.
  • K. Khanafer and K. Vafai, A Critical Synthesis of Thermophysical Characteristics of Nanofluids, Int. J. Heat Mass Transf., vol. 54, pp. 4410–4428, 2011.
  • J. Buongiorno, Convective Transport in Nanofluids, J. Heat Transf., vol. 128, pp. 240, 2006.
  • D. A. Nield and A. V. Kuznetsov, Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid, Int. J. Heat Mass Transf., vol. 52, pp. 5796–5801, 2009.
  • H. Zargartalebi, A. Noghrehabadi, and M. Ghalambaz, Ioan Pop, Natural Convection Boundary Layer Flow over a Horizontal Plate Embedded in Porous Medium Saturated with a Nanofluid: Case of Variable Thermophysical Properties, Transp. in Porous Media, vol. 107, pp. 153–170, 2014.
  • D. Y. Tzou, Instability of Nanofluids in Natural Convection, J. Heat Transf., vol. 130, pp. 072401, 2008.
  • D. Y. Tzou, Thermal Instability of Nanofluids in Natural Convection, Int. J. Heat Mass Transf., vol. 51, pp. 2967–2979, 2008.
  • D. A. Nield and A. V. Kuznetsov, The Cheng–Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid, Int. J. Heat Mass Transf., vol. 52, pp. 5792–5795, 2009.
  • H. Zargartalebi, M. Ghalambaz, A. Noghrehabadi, and A. Chamkha, Stagnation-Point Heat Transfer of Nanofluids towards Stretching Sheets with Variable Thermo-Physical Properties, Advanced Powder Tech., vol. 26, pp. 819–829, 2015.
  • B. Alazmi and K. Vafai, Analysis of Fluid Flow and Heat Transfer Interfacial Conditions between a Porous Medium and a Fluid Layer, Int. J. Heat Mass Transf., vol. 44, pp. 1735–1749, 2001.
  • K. Yang and K. Vafai, Restrictions on the Validity of the Thermal Conditions at the Porous-Fluid Interface: An Exact Solution, ASME J. Heat Transf., vol. 133, pp. 112601, 2011.
  • J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York, 1993.
  • T. Basak, S. Roy, and A. R. Balakrishnan, Effects of Thermal Boundary Conditions on Natural Convection flows within a Square Cavity, Int. J. Heat Mass Transf., vol. 49, pp. 4525–4535, 2006.
  • T. Basak, S. Roy, T. Paul, and I. Pop, Natural Convection in a Square Cavity Filled with a Porous Medium: Effects of Various Thermal Boundary Conditions, Int. J. Heat Mass Transf., vol. 49, pp. 1430–1441, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.