Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 4
154
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation and optimization of nanofluid in a C-shaped chaotic channel

, &
Pages 366-383 | Received 05 Oct 2015, Accepted 24 Feb 2016, Published online: 21 Jul 2016

References

  • S. W. Jones, O. M. Thomas, and H. Aref, Chaotic Advection by Laminar Flow in a Twisted pipe, J. Fluid Mech., vol. 209, pp. 209–335, 1989.
  • N. Acharya, M. Sen, and H. C. Chang, Heat Transfer Enhancement in Coiled Tubes by Chaotic Mixing, Int. J. Heat Mass Transfer, vol. 35, pp. 2475–2489, 1992.
  • J. Branebjerg, P. Gravesen, J. P. Krog, and C. R. Nielsen, Fast mixing by Lamination, in Proc. IEEE MEMS Workshop, San Diego, CA. pp. 441–446, 1996.
  • M. A. Stremler and H. Aref, Chaotic Advection in a Static Microscale Mixer, Bull. Amer. Phys. Soc., American Physical Society, Division of Fluid Dynamics Meeting, November 22‒24, Philadelphia, PA, abstract #NK 0443, 1998
  • H. Aref, The Development of Chaotic Advection, Phys. Fluids, vol. 14, pp. 1315–1325, 2002.
  • R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, Passive Mixing in a Three-Dimensional Serpentine Microchannel, J. Microelectromech. Syst., vol. 9, no. 2, pp. 190–197, 2000.
  • D. J. Beebe, R. J. Adrian, M. G. Olsen, M. A. Stremler, H. Aref, and B. H. Jo, Passive Mixing in Microchannels: Fabrication and Flow Experiments, Mec. Ind., vol. 2, no. 4, pp. 343–348, 2001.
  • Y. Lasbet, B. Auvity, C. Castelain, and H. Peerhossaini, A Chaotic Heat-exchanger for PEMFC Cooling Applications, J. Power Sources, vol. 156, no. 1, pp. 114–118, 2006.
  • C. Castelain, A. Mokrani, Y. Le Guer, and H. Peerhossaini, Experimental Study of Chaotic Advection Regime in a Twisted Duct Flow, Eur. J. Mech.-B/Fluids, vol. 20, no. 2, pp. 205–232, 2001.
  • K. W. Lin and J. T. Yang, Chaotic Mixing of Fluids in a Planar Serpentine Channel, Int. J. Heat Mass Transfer, vol. 50, pp. 1269–1277, 2007.
  • A. Tohidi, S. M. Hosseinalipour, Z. Ghasemi Monfared, and A. Mujumdar, Laminar Heat Transfer Enhancement Utilizing Nanofluids in a Chaotic Flow, ASME J. Heat Transfer, vol. 136, no. 9, paper no. 091704, 2014.
  • B. Mehi and H. Morteza, Numerical Simulation of Nanofluid Application in a C-shaped Channel: A Potential Approach for Energy Efficiency Improvement, Energy, vol. 74, pp. 863–870, 2014.
  • S. U. Choi and J. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, pp. 12–17, 1995.
  • J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, and S. Lee, Enhanced Thermal Conductivity through the Development of Nanofluids, Mater. Res. Soc. Symposium-Proceedings, vol. 457, pp. 3–11, 1996.
  • J. C. Maxwell, Electricity and Magnetism, 1st ed., Clarendon Press, Oxford, England, 1873.
  • P. Keblinski, S. Phillpot, and S. Choi, Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids), Int. J. Heat Mass Transfer, vol. 45, no. 4, pp. 855–863, 2002.
  • J. Buongiorno, Convective Transport in Nanofluids, ASME J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006.
  • S. K. Das, S. U. S. Choi, and H. E. Patel, Heat Transfer in Nanofluids – A Review, Heat Transfer Eng., vol. 37, pp. 3–19, 2006.
  • J. Wang, M. Wang, and Z. Li, A Lattice Boltzmann Algorithm for Fluid–Solid Conjugate Heat Transfer, Int. J. Therm. Sci., vol. 46, pp. 228–234, 2007.
  • W. H. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering, vol. 29, pp. 432–460, 2008.
  • S. Özerinç, S. Kakaç and A. G. YazIcIoǧlu, Enhanced Thermal Conductivity of Nanofluids: A State-of-the-art review, Microfluid. Nanofluid., vol. 8, pp. 145–170, 2010.
  • C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H. Angue Mintsa, Temperature and Particle-Size Dependent Viscosity data for Water-Based Nanofluids-Hysteresis Phenomenon, Int. J. Heat Fluid Flow, vol. 28, pp. 1492–1506, 2007.
  • S. E. B. Maïga, S. J. Palm, and C. T. Nguyen, Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows, Int. J. Heat Fluid Flow, vol. 26, no. 4, pp. 530–546, 2005.
  • A. K. Santra, S. Sen, and N. Chakraborty, Study of Heat Transfer Due to Laminar Flow of Copper-Water Nanofluid Through Two Isothermally Heated Parallel Plates, Int. J. Therm. Sci., vol. 48, pp. 391–400, 2009.
  • H. A. Mohammed, P. Gunnasegaran, and N. H. Shuaib, Heat Transfer in Rectangular Microchannels Heat Sink Using Nanofluids, Int. J. Heat Mass Transfer, vol. 37, pp. 1496–1503, 2010.
  • J. Li and C. Kleinstreuer, Thermal Performance of Nanofluid Flow in Microchannels, Int. J. Heat Fluid Flow, vol. 29, pp. 1221–1232, 2008.
  • K. Pawan Singh, and P. V. Harikrishna, Experimental, and Numerical Investigation into the Heat Transfer Study of Nanofluids in Microchannel, ASME J. Heat Transfer, vol. 133, no. 12, paper no. 121701, 2011.
  • R. Lotfi, Y. Saboohi, and A. Rashidid, Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches, Int. Commun. Heat Mass Transfer, vol. 37, no.1, pp. 74–78, 2010.
  • M. Akbari, N. Galanis, and A. Behzadmehr, Comparative Analysis of Single and Two-phase Models for CFD Studies of Nanofluid Heat Transfer, Int. J. Therm. Sci., vol. 50, pp. 1343–1354, 2011.
  • K. M. Mostafa, and R. M. Ardehali, CFD Modeling (Comparing Single, and Two-phase Approaches) on Thermal Performance of Al2O3/water Nanofluid in Mini-channel Heat Sink, Int. Commun. Heat Mass Transfer, vol. 44, pp.157–164, 2013.
  • M. Hejazian and M. K. Moraveji, A Comparative Analysis of a Single and Two-phase Models of Turbulent Convective Heat Transfer in a Tube for TiO2 Nanofluid with CFD, Numer. Heat Transfer A, vol. 63, no. 10, pp. 795–806, 2013.
  • M. Hejazian, M. K. Moraveji, and A. Behesshti, Comparative Numerical Investigation on TiO2 Nanofluid Turbulent Flow by Implementation of Single and Two-Phase Approaches, Numer. Heat Transfer A, vol. 66, no. 3, pp. 330–348, 2014.
  • P. Ganesan, I. Behroyan, S. He, S. Sivasankaran, and S. C. Sandaran, Turbulent Forced Convection of Cu-water Nanofluid in a Heated Tube: Improvement of the Two-Phase Model, Numer. Heat Transfer A, vol. 69, no. 4, pp. 401–420, 2016.
  • K. Narrein, S. Sivasankaran, and P. Ganesan, Numerical Investigation of Two-Phase Laminar Pulsating Nanofluid Flow in a Helical Microchannel, Numer. Heat Transfer A, vol. 69, pp. 1–10, 2016 (in press).
  • D. Liu and S. V. Garimella, Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks, Int. J. Numer. Methods Heat Fluid Flow, vol. 15, no. 1, pp. 7–26, 2005.
  • J. Li and G. P. Peterson, Geometric Optimization of a Micro Heat Sink with Liquid Flow, IEEE Trans. Compon. Packag Technol., vol. 29, no. 1, pp. 145–154, 2006.
  • A. Husain and K. Y. Kim, Shape Optimization of Micro-Channel Heat Sink for Micro-Electronic Cooling, IEEE Trans. Compon. Packag. Technol., vol. 31, no. 2, pp. 322–330, 2008.
  • A. P. Sasmito, J. C. Kurnia, and A. S. Mujumdar, Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes, Nanoscale Res. Lett., vol. 6, no.1, pp. 1–14, 2011.
  • R. M. Moghari, A. Akbarinia, M. Shariat, F. Talebi, and R. Laur, Two-Phase Mixed Convection Al2O3–Water Nanofluid Flow in an Annulus, Int. J. Multiphase Flow, vol. 37, pp. 585–595, 2011.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
  • G. E. P. Box and N. R. Draper, Empirical Model-Building and Response Surface, John Wiley and Sons, Inc., New York, 1987.
  • MATLAB User Manual, Version 6.5 Release 13, The Math Works, Inc., 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.