Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 4
160
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Parametric influence on convective heat transfer for an outlet guide vane

, , , &
Pages 331-346 | Received 20 Dec 2015, Accepted 23 Feb 2016, Published online: 13 Jul 2016

References

  • L. Wang, B. Sundén, V. Chernoray, and H. Abrahamsson, Experimental Study of Endwall Heat Transfer in a Linear Cascade, J. Phys. Conf. Ser., vol. 395, no. 1, p. 012028, 2012.
  • C. Wang, L. Luo, L. Wang, B. Sundén, V. Chernoray, A. Arroyo, and H. Abrahamsson, Experimental and Numerical Investigation of Outlet Guide Vane and Endwall Heat Transfer with Various Incidence Angles, Int. J. Heat Mass Transfer, vol. 95, pp. 355–367, 2015.
  • L. Luo, C. Wang, L. Wang, B. Sundén, and S. Wang, Endwall Heat Transfer and Aerodynamic Performance of Bowed Outlet Guide Vanes (OGVs) with on- and Off-design Conditions, Numer. Heat Transfer, Part A: Appl., vol. 69, no. 4, pp. 352–368, 2016.
  • F. E. Ames, C. Wang, and P. A. Barbot, Measurement and Prediction of the Influence of Catalytic and Dry Low NOx Combustor Turbulence on Vane Surface Heat Transfer, ASME J. Turbomach., vol. 125, no. 2, pp. 221–231, 2003.
  • F. E. Ames, The Influence of Large-scale High-intensity Turbulence on Vane Heat Transfer, ASME J. Turbomach., vol. 119, no. 1, pp. 23–30, 1997.
  • F. E. Ames, Heat Transfer with High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point, Ph.D. Thesis, Stanford University, USA, 1991.
  • R. J. Butler, A. R. Byerley, K. VanTreuren, and J. W. Baughn, The Effect of Turbulence Intensity and Length Scale on Low-pressure Turbine Blade Aerodynamics, Int. J. Heat Fluid Flow, vol. 22, no. 2, pp. 123–133, 2001.
  • T. Arts and M. Lambert de Rouvroit, Aero-thermal Performance of a Two-dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations, ASME J. Turbomach., vol. 114, pp. 147–154, 1990.
  • R. E. Mayle, The 1991 IGTI Scholar Lecture: The Role of Laminar-turbulent Transition in Gas Turbine Engines, ASME J. Turbomach., vol. 113, no. 4, pp. 509–536, 1991.
  • J. Choi, S. Teng, J. C. Han, and F. Ladeinde, Effect of Free-stream Turbulence on Turbine Blade Heat Transfer and Pressure Coefficients in low Reynolds Number Flows, Int. J. Heat Mass Transfer, vol. 47, no. 14, pp. 3441–3452, 2004.
  • S. Nasir, J. S. Carullo, W. F. Ng, K. A. Thole, H. Wu, L. J. Zhang, and H. K. Moon, Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade, ASME J. Turbomach., vol. 131, no. 2, 021021, 2009.
  • D. A. Nealy, M. S. Mihelc, L. D. Hylton, and H. J. Gladden, Measurements of Heat Transfer Distribution over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes, ASME J. Eng. Gas Turbines Power, vol. 106, no. 1, pp. 149–158, 1984.
  • N. Dalili, A. Edrisy, and R. Carriveau, A Review of Surface Engineering Issues Critical to Wind Turbine Performance, Renewable Sustainable Energy Rev., vol. 13, no. 2, pp. 428–438, 2009.
  • V. T. Forster, Performance Loss of Modern Steam-turbine Plant Due to Surface Roughness, Proc. Inst. Mech. Eng., vol. 181, no. 1, pp. 391–422, 1966.
  • S. A. Hippensteele, L. M. Russell, and F. J. Torres, Use of a Liquid-Crystal, Heater-Element Composite for Quantitative, High-Resolution Heat Transfer Coefficients on a Turbine Airfoil, Including Turbulence and Surface Roughness Effects, NASA Report, NASA-TM-87355, 1987.
  • R. P. Saini and J. S. Saini. Heat Transfer and Friction Factor Correlations for Artificially Roughened Ducts with Expanded Metal Mesh as Roughness Element, Int. J. Heat Mass Transfer, vol. 40, no. 4, pp. 973–986, 1997.
  • M. W. Pinson and T. Wang, Effects of Leading-edge Roughness on Fluid Flow and Heat Transfer in the Transitional Boundary Layer Over a Flat Plate, Int. J. Heat Mass Transfer, vol. 40, no. 12, pp. 2813–2823,1997.
  • M. R. Raupach, R. A. Antonia, and S. Rajagopalan, Rough-wall Turbulent Boundary Layers, Appl. Mech. Rev., vol. 44, no. 1, pp. 1–25, 1991.
  • A. B. Turner, F. H. A. Tarada, and F. J. Bayley, Effects of Surface Roughness on Heat Transfer to Gas Turbine Blades, AGARD-CP-390, pp. 9–1 to 9–9, 1985.
  • V. K. Garg. Heat Transfer Research on Gas Turbine Airfoils at NASA GRC, Int. J. Heat Fluid Flow, vol. 23, no. 2, pp. 109–136, 2002.
  • N. Abuaf, R. S. Bunker, and C. P. Lee, Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils, ASME J. Turbomach., vol. 120, no. 3, pp. 522–529, 2008.
  • R. S. Bunker, Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer, ASME Paper No. 97-GT-135, 2002.
  • R. J. Boyle, C. M. Spuckler, B. L. Lucci, and W. P. Camperchioli, Infrared Low-temperature Turbine Vane Rough Surface Heat Transfer Measurements, ASME J. Turbomach., vol. 123, no. 1, pp. 168–177, 2001.
  • M. F. Blair. An Experimental Study Heat Transfer in a Large-Scale Turbine Rotor Passage, ASME J. Turbomach., vol. 116, no. 1, pp.1–13, 1994.
  • D. G. Bogard, D. L. Schmidt, and M. Tabbita, Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer, ASME J. Turbomach., vol. 120, no. 2, pp. 337–342, 1998.
  • M. Tutar and Ü. Sönmez. The Computational Modeling of Transitional Flow Through a Transonic Linear Turbine: Comparative Performance of Various Turbulence Models, Numer. Heat Transfer, Part A: Appl., vol. 58, no. 5, pp. 403–427, 2010.
  • R. Bhaskaran and S. K. Lele. Large Eddy Simulation of Free-Stream Turbulence Effects on Heat Transfer to a High-Pressure Turbine Cascade, J. Turbul., vol. 11, no. 6, pp. 1–15, 2010.
  • J. Luo, E. H. Razinsky, and H. K. Moon, Three-Dimensional RANS Prediction of Gas-side Heat Transfer Coefficients on Turbine Blade and Endwall, ASME J. Turbomach., vol. 135, no. 2, p. 021005, 2013.
  • J. C. Han, Fundamental Gas Turbine Heat Transfer, ASME J. Therm. Sci. Eng. Appl., vol. 5, no. 2, p. 021007, 2013.
  • P. Wang, Y. Li, Z. P. Zou, L. Wang, and S. H. Song, Improvement of a Turbulence Model for Conjugate Heat Transfer Simulation, Numer. Heat Transfer, Part A: Appl., vol. 62, no. 8, pp. 624–638, 2012.
  • P. Maruzewski, V. Hasmatuchi, H. P. Mombelli, D. Burggraeve, J. Iosfin, P. Finnegan, and F. Avellan, Surface Roughness Impact on Francis Turbine Performances and Prediction of Efficiency Step Up, Int. J. Fluid Mach. Syst., vol. 2, no. 4, pp. 353–362, 2009.
  • A. Fiala and E. Kügeler, Roughness Modeling for Turbomachinery, ASME Paper No. GT2011-45424, 2011.
  • R. J. Boyle and R. G. Senyitko, Measurements and Predictions of Surface Roughness Effects on the Turbine Vane Aerodynamics, ASME Paper No. GT2003–38580, 2003.
  • H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson Education, Glasgow, UK, 2007.
  • K. G. Vijay and A. A. Ali, Comparison of Two-Equation Turbulence Models for Prediction of Heat Transfer on Film-Cooled Turbine Blades, Numer. Heat Transfer, Part A: Appl., vol. 32, no. 4, pp. 347–371, 2007.
  • F. R. Menter and R. B. Langtry, Transition Modelling for Turbomachinery Flows, Low Reynolds Number Aerodynamics and Transition, Dr. Mustafa Serdar Genc (Ed.), ISBN: 978-953-51-0492-6, InTech, Availablefrom:http://www.intechopen.com/books/low-reynolds-number-aerodynamics-and-transition/transitionmodelling-for-turbomachinery-flows, 2012.
  • M. Mori, B. Drobnič, B. Jurjevčič, and L. Novak, Numerical Modeling of Heat Transfer and Flow Phenomena in an Axial Rotating Rotor Cascade, Numer. Heat Transfer, Part A: Appl., vol. 67, no. 10, pp. 1053–1074, 2015.
  • L. Luo, C. Wang, L. Wang, B. Sundén, and S. Wang. Heat Transfer and Friction Factor Performance in Pin Fin Wedge Duct with Different Dimple Arrangements, Numer. Heat Transfer, Part A: Appl., vol. 69, no. 2, pp. 209–226, 2016.
  • R. B. Langtry, F. R. Menter, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Völker, A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications, ASME J. Turbomach., vol. 128, no. 3, pp. 423–434, 2006.
  • L. Luo, B. Sunden, and S. Wang. Optimization of the Blade Profile and Cooling Structure in a Gas Turbine Stage Considering both the Aerodynamics and Heat Transfer, Heat Transfer Res., vol. 46, no. 7, pp. 599–629, 2015.
  • F. R. Menter, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., vol. 32, pp. 1598–1605, 1994.
  • F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and Völker, S., A Correlation-based Transition Model using Local Variables—Part I: Model Formulation, ASME J. Turbomach., vol. 128, no. 3, pp. 413–422, 2006.
  • D. McLean, Understanding Aerodynamics: Arguing from the Real Physics, John Wiley and Sons, England, UK, 2012.
  • ANSYS CFX, Reference Guide, Release 13, 2010.
  • I. Hadžić and K. Hanjalić, Separation-Induced Transition to Turbulence: Second-moment Closure Modeling, Flow, Turbul. Combust., vol. 63, no. 1–4, pp. 153–173, 2000.
  • J. Babajee and T. Arts, Investigation of the Laminar Separation-Induced Transition on Two Low-pressure Turbine Rotor Blades, Int. J. Eng. Syst. Modell. Simul., vol. 5, pp. 99–108, 2013.
  • Wu, X., P. Moin, and J. P. Hickey, Boundary Layer Bypass Transition, Phys. Fluids, vol. 26, no. 9, Paper No. 091104, 2014.
  • P. Jonáš, O. Mazur, and V. Uruba, On the Receptivity of the By-Pass Transition to the Length Scale of the Outer Stream Turbulence, Eur. J. Mech.-B/Fluids, vol. 19, no. 5, pp. 707–722, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.