Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 6
162
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Thermal performance evaluation of the rotating U-shaped micro/mini/macrochannels using water and nanofluids

&
Pages 650-672 | Received 14 Feb 2016, Accepted 20 Apr 2016, Published online: 18 Aug 2016

References

  • M. Hatami and D. D. Ganji, Thermal and Flow Analysis of Microchannel Heat Sink (MCHS) Cooled by Cu–Water Nanofluid using Porous Media Approach and Least Square Method, Energy Convers. Manag., vol. 78, pp. 347–358, 2014.
  • D. Lelea, The Performance Evaluation of Al2O3/water Nanofluid Flow and Heat Transfer in Microchannel Heat Sink, Int. J. Heat Mass Transfer, vol. 54, pp. 3891–3899, 2011.
  • S. G. Kandlikar and W. J. Grande, Evolution of Microchannel Flow Passages – Thermohydraulic Performance and Fabrication Technology, Heat Transfer Eng., vol. 24(1), pp. 3–17, 2003.
  • D. B. Tuckerman and R. F. W. Pease, High-performance heat sinking for VLSI, IEEE Electr. Dev. Lett., vol. 2, pp. 126–129, 1981.
  • J. C. Y. Koh and R. Colony, Heat Transfer of Microstructures for Integrated Circuits, Int. Commun. Heat Mass Transfer, vol. 13, pp. 89–98, 1986.
  • S. J. Kim and D. Kim, Forced Convection in Microstructures for Electronic Equipment Cooling, J. Heat Transfer, vol. 121(3), pp. 639–645, 1999.
  • C. B. Sobhan and S. V. Garimella, A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels, Microscale Thermophys. Eng., vol. 15, pp. 293–311, 2001.
  • W. Qu and I. Mudawar, Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Microchannel Heat Sink, Int. J. Heat Mass Transfer, vol. 45, pp. 2549–2565, 2002.
  • H. Y. Wu and P. Cheng, An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions, Int. J. Heat Mass Transfer, vol. 46, pp. 2547–2556, 2003.
  • C. H. Chen, Forced Convection Heat Transfer in Microchannel Heat Sinks, Int. J. Heat Mass Transfer, vol. 50, pp. 2182–2189, 2007.
  • X. L. Xie, Z. J. Liu, Y. L. He, and W. Q. Tao, Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-cooled Minichannel Heat Sink, App. Therm. Eng., vol. 49, pp. 64–74, 2009.
  • L. Chai, G. Xia, M. Zhou, J. Li, and J. Qi, Optimum Thermal Design of Interrupted Microchannel Heat Sink with Rectangular Ribs in the Transverse Microchambers, App. Therm. Eng., vol. 51, pp. 880–889, 2013.
  • Y.-T. Yang, Y.-H. Wang, and B.-Y. Huang, Numerical Optimization for Nanofluid Flow in Microchannels Using Entropy Generation Minimization, Numerical Heat Transfer, Part A: Applications, vol. 67(5), pp. 571–588, 2015.
  • H. El Mghari, H. Louahlia-Gualous, and E. Lepinasse, Numerical Study of Nanofluid Condensation Heat Transfer in a Square Microchannel, Numerical Heat Transfer, Part A: Applications, vol. 68(11), pp. 1242–1265, 2015.
  • P. Roy, N. K. Anand, and B. Banerjee, A Review of Flow and Heat Transfer in Rotating Microchannels, Procedia Eng., vol. 56, pp. 7–17, 2013.
  • D. D. Nolte, Invited Review Article: Review of Centrifugal Microfluidic and Bio-Optical Disks, Rev. Sci. Instrum., vol. 80(10), pp. 101101, 2009.
  • P. Roy, N. K. Anand, and B. Banerjee, Numerical Simulation of Flow and Heat Transfer in Radially Rotating Microchannels, Microfluid Nanofluid, vol. 15, pp. 397–413, 2013.
  • R. Xiong and J. N. Chung, Flow Characteristics of Water in Straight and Serpentine Micro-channels with Miter Bends, Exp. Therm. Fluid Science, vol. 31, pp. 805–812, 2007.
  • M. A. Ansari and K. Y. Kim, Parametric Study on Mixing of Two Fluids in a Three-dimensional Serpentine Microchannel, Chem. Eng. J., vol. 146, pp. 439–448, 2009.
  • H. Iacovides, D. C. Jackson, B. E. Launder, and Y. M. Yuan, An Experimental Study of a Rib-roughened Rotating U-bend flow, Exp. Therm. Fluid Sci., vol. 19, pp. 151–159, 1999.
  • M. Al-Qahtani, Y. J. Jang, H. C. Chen, and J. C. Han, Flow and Heat Transfer in Rotating Two-pass Rectangular Channels (AR = 2) by Reynolds Stress Turbulence Model, Int. J. Heat Mass Transfer, vol. 45, pp. 1823–1838, 2002.
  • T. S. Griffith, L. Al-Hadhrami, and J. C. Han, Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) with Angled Ribs, ASME J. Heat Transfer, vol. 124, pp. 617–625, 2002.
  • L. Al-Hadhrami and J. C. Han, Effect of Rotation on Heat Transfer in Two-Pass Square Channels with Five Different Orientations of 45° Angled, Int. J. Heat Mass Transfer, vol. 46, pp. 653–669, 2002.
  • M. R. H. Nobari, A. Nousha, and E. Damangir, A Numerical Investigation of Flow and Heat Transfer in Rotating U-shaped Square Ducts, Int. J. therm. Sci., vol. 48, pp. 590–601, 2009.
  • M. Huh, Y. H. Liu, and J. C. Han, Effect of Rib Height on Heat Transfer in a Two Pass Rectangular Channel (AR = 14) with a Sharp Entrance at High Rotation Numbers, Int. J. Heat Mass Transfer, vol. 52, pp. 4635–4649, 2009.
  • T. S. Dhanasekaran and T. Wang, Computational Analysis of Mist/air Cooling in a Two-pass Rectangular Rotating Channel with 45-deg Angled Rib Turbulators, Int. J. Heat Mass Transfer, vol. 61, pp. 554–564, 2013.
  • M. Kanikzadeh and A. Sohankar, Numerical Investigation of Forced Convection Flow of Nanofluids in Rotating U-shaped Smooth and Ribbed Channels, Heat Transfer Eng., vol. 37(10), pp. 840–861, 2016.
  • S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, FED 231/MD 66, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, pp. 99–105, ASME, 1995.
  • P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, Mechanisms of Heat Flow in Suspension of Nano-sized Particles (nanofluids), Int. J. Heat Mass Transfer, vol. 45, pp. 855–863, 2002.
  • X. Q. Wang and A. S. Mujumdar, Heat Transfer Characteristics of Nanofluids: A review, Int. J. Therm. Sci., vol. 46, pp. 1–19, 2007.
  • S. Kakac and A. Pramuanjaroenkij, Review of Convective Heat Transfer Enhancement with Nanofluids, Int. J. Heat Mass Transfer, vol. 52, pp. 3187–3196, 2009.
  • R. S. Vajjha and D. K. Das, Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations, Int. J. Heat Mass Transfer, vol. 52, pp. 4675–4682, 2009.
  • L. Godson, B. Raja, D. M. Lal, and S. Wongwises, Enhancement of Heat Transfer Using Nanofluids - an Overview, Renew. Sustain. Energy Rev., vol. 14, pp. 629–641, 2010.
  • M. Corcione, Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids, Energy Convers. Manage., vol. 52, pp. 789–793, 2011.
  • A. M. Hussein, K. V. Sharma, R. A. Bakar, and K. Kadirgama, A Review of Forced Convection Heat Transfer Enhancement and Hydrodynamic Characteristics of a Nanofluid, Renew. Sustain. Energy Rev., vol. 29, pp. 734–743, 2014.
  • H. A. Mohammed, G. Bhaskaran, N. H. Shuaib, and R. Saidur, Heat Transfer and fluid flow Characteristics in Microchannels Heat Exchanger Using Nanofluids: A review, Renew. Sustain. Energy Rev., vol. 15, pp. 1502–1512, 2011.
  • B. H. Salman, H. A. Mohammed, K. M. Munisamy, and A. S. Kherbeet, Characteristics of Heat Transfer and Fluid Flow in Microtube and Microchannel using Conventional Fluids and Nanofluids: A review, Renew. Sustain. Energy Rev., vol. 28, pp. 848–880, 2013.
  • J. Koo and C. Kleinstreuer, Laminar Nanofluid Flow in Microheat-sinks, Int. J. Heat Mass Transfer, vol. 48, pp. 2652–2661, 2005.
  • J. Y. Jung, H. S. Oh, and H. Y. Kwak, Forced Convective Heat Transfer of Nanofluids in Microchannels, Int. J. Heat Mass Transfer, vol. 52, pp. 466–472, 2009.
  • C. J. Ho, L. C. Wei, and Z. W. Li, An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink with Al2O3/water Nanofluid, Applied Thermal Eng., vol. 30, pp. 96–103, 2010.
  • T. C. Hung, W. M. Yan, X. D. Wang, and C. Y. Chang, Heat Transfer Enhancement in Microchannel Heat Sinks Using Nanofluids, Int. J. Heat Mass Transfer, vol. 55, pp. 2559–2570, 2012.
  • T. C. Hung and W. M. Yan, Enhancement of Thermal Performance in Double-Layered Microchannel Heat Sink with Nanofluids, Int. J. Heat Mass Transfer, vol. 55, pp. 3225–3238, 2012.
  • K. Narrein, S. Sivasankaran, and P. Ganesan, Numerical Investigation of Two-Phase Laminar Pulsating Nanofluid Flow in a Helical Microchannel, Numer. Heat Transfer, Part A: Appl., pp. 1–10, 2016, Article in Press.
  • B. S. Kim, B. S. Kwak, S. Shin, S. Lee, K. M. Kim, and H. I. Jung, Optimization of Microscale Vortex Generators in a Microchannel Using Advanced Response Surface Method, Int. J. Heat Mass Transfer, vol. 54, pp. 118–125, 2011.
  • C. Liu, J. Teng, J. C. Chu, Y. Chiu, S. Huang, S. Jin, T. Dang, R. Greif, and H. H. Pan, Experimental Investigations on Liquid Flow and Heat Transfer in Rectangular Microchannel with Longitudinal Vortex Generators, Int. J. Heat Mass Transfer, vol. 54, pp. 3069–3080, 2011.
  • S. Baheri Islami, B. Dastvareh, and R. Gharraei, Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer, Int. Commun. Heat Mass, vol. 43, pp. 146–154, 2013.
  • C. Chen, J. T. Teng, C. H. Cheng, S. Jin, S. Huang, C. Liu, M. T. Lee, H. H. Pan, and R. Greif, A Study on Fluid Flow and Heat Transfer in Rectangular Microchannels with Various Longitudinal Vortex Generators, Int. J. Heat Mass Transfer, vol. 69, pp. 203–214, 2014.
  • Th. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th edition, pp. 1003–1004, Wiley, Hoboken, NJ, 2011.
  • V. Vasu, Theoretical Analysis of Compact Heat Exchanger Using Nanofluids, PhD thesis, Jawaharlal Nehru Technological University, Hyderabad, 2011.
  • W. Yu, D. M. France, S. U. S. Choi, and J. L. Routbort, Review and Assessment of Nanofluid Technology for Transportation and Other Applications, Energy Systems Division, Argonne National Laboratory, Argonne, IL, 2007.
  • A. Sohankar, Heat Transfer Augmentation in a Rectangular Channel with a Vee-Shaped Vortex Generator, Int. J. Heat Fluid Flow, vol. 28, pp. 306–317, 2007.
  • M. Mirzaei, A. Sohankar, L. Davidson, and F. Innings, Large Eddy Simulation of the Flow and Heat Transfer in a Half-Corrugated Channel with Various Wave Amplitudes, Int. J. Heat Mass transfer, vol. 76, pp. 432–446, 2014.
  • M. Mirzaei and A. Sohankar, Heat Transfer Augmentation in Plate Finned Tube Heat Exchangers With Vortex Generators: A comparison of Round and Flat Tubes, IJST, Trans. Mech. Eng., vol. 37(M1), pp. 39–51, 2013.
  • R. K. Shah and D. P. Sekulic, Fundamentals of Heat Exchanger Design, pp. 713–723, Wiley, Hoboken, NJ, 2003.
  • S. V. Ekkad, G. Pamula, M. Shantiniketanam, Detailed Heat Transfer Measurements Inside Straight and Tapered Two-Pass Channels with Rib Turbulators, Exp. Therm. Fluid Sci., vol. 22, pp. 155–163, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.