Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 8
182
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation and optimization of turbulent nanofluids in a three-dimensional arc rib-grooved channel

, , &
Pages 831-846 | Received 24 Mar 2016, Accepted 23 Jun 2016, Published online: 20 Sep 2016

References

  • P. Promvonge, and C. Thianpong, Thermal performance assessment of turbulent channel flow over different shape ribs, Int. Commun. Heat Mass Transfer, vol. 35, pp. 1327–1334, 2008.
  • P. Promvonge, S. Skullong, S. Kwankaomeng, and C. Thiangpong, Heat transfer in square duct fitted diagonally with angle-finned tape–part 1: Experimental study, Int. Commun. Heat Mass Transfer, vol. 39, pp. 617–624, 2012.
  • P. Promvonge, S. Skullong, S. Kwankaomeng, and C. Thiangpong, Heat transfer in square duct fitted diagonally with angle-finned tape—Part 2: Numerical study, Int. Commun. Heat Mass Transfer, vol. 39, pp. 625–633, 2012.
  • S. Eiamsa-ard S., and P. Promvonge, Numerical study on heat transfer of turbulent channel flow over periodic grooves, Int. Commun. Heat Mass Transfer, vol. 35, pp. 844–852, 2008.
  • S. Eiamsa-ard, and P. Promvonge, Thermal characteristics of turbulent rib-grooved channel flows, Int. Commun. Heat Mass Transfer, vol. 36, pp. 705–711, 2009.
  • S. Sripattanapipat, and P. Promvonge, Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles, Int. Commun. Heat Mass Transfer, vol. 36, pp. 32–38, 2009.
  • P. Sriromreun, C. Thianpong, and P. Promvonge, Experimental and numerical study on heat transfer enhancement in a channel with Z-Shaped baffles, Int. Commun. Heat Mass Transfer, vol. 39, pp. 945–952, 2012.
  • J. C. Han, Y. M. Zhang, and C. P. Lee, Augmented heat transfer in square channels with parallel, crossed and v-shaped angled ribs, ASME J. Heat Transfer Trans., vol. 113, pp. 590–596, 1991.
  • J. C. Han, Y. M. Zhang, and C. P. Lee, Influence of surface heat flux ratio on heat transfer augmentation in square channels with parallel, crossed, and v-shaped angled rib, ASME J. Turbomach. Trans., vol. 114, pp. 872–880, 1992.
  • M. E. Taslim, T. Li, and D. M. Kercher, Experimental heat transfer and friction in channels roughened with angled, V-shaped, and discrete ribs on two opposite walls, ASME J. Turbomach. Trans., vol. 118, pp. 20–28, 1996.
  • G. Tanda, Heat transfer in rectangular channel with transverse and v-shaped broken ribs, Int. J. Heat Mass Transfer, vol. 47, pp. 229–243, 2004.
  • P. Promvonge, and C. Thianpong, Thermal performance assessment of turbulent channel flow over different shaped ribs, Int. Commun. Heat Mass Transfer, vol. 35, pp. 1327–1334, 2008.
  • C. Thianpong, T. Chompookham, S. Skullong, and P. Promvonge, Thermal characterization of turbulent flow in a channel with isosceles triangular ribs, Int. Commun. Heat Mass Transfer, vol. 36, pp. 712–717, 2009.
  • A. M. E. Momin, J. S. Saini, and S. C. Solanki, Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate, Int. J. Heat Mass Transfer, vol. 45, pp. 3383–3396, 2002.
  • T. Chompookham, C. Thianpong, S. Kwankaomeng, and P Promvonge, Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators, Int. Commun. Heat Mass Transfer, vol. 37, pp. 163–169, 2010.
  • P. Promvonge, T. Chompookham, S. Kwankaomeng, and C. Thianpong, Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators, Energy Convers. Manag., vol. 51, pp. 1242–1249, 2010.
  • P. Promvonge, S. Sripattanapipat, S. Tamna, S. Kwankaomeng, and C. Thianpong, numerical investigation of laminar heat transfer in a square channel with 45° inclined baffles, Int. Commun. Heat Mass Transfer, vol. 37, pp. 170–77, 2010.
  • P. Promvonge, S. Sripattanapipat, and S. Kwankaomeng, Laminar periodic flow and heat transfer in square channel with 45° inline baffles on two opposite, Int. J. Therm. Sci., vol. 49, pp. 963–975, 2010.
  • S. U. S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME FED 231, pp. 99–103, 1995.
  • J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, Mater. Res. Soc. Symp. Proc., vol. 457, pp. 3–11, 1996.
  • S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, vol. 121, pp. 280–289, 1999.
  • H. Q. Xie, J. C. Wang, T. G. Xi, Ai Y. F. Liu, and Q. R. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., vol. 91, pp. 4568–4572, 2002.
  • Y. Xuan, and Q. Li, Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer, vol. 125, pp. 151–155, 2003.
  • C. J. Ho, L. C. Wei, and Z. W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid, Appl. Therm. Eng., vol. 30, pp. 96–103, 2010.
  • S. M. S. Murshed, K. C. Leong, and C. Yang, Enhanced thermal conductivity of water-based nan fluids, Int. J. Thermal Sci., vol. 44, pp. 367–373, 2005.
  • D. H. Yoo, K. S. Hong and H. S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochimica Acta, vol. 455, pp. 66–69, 2007.
  • R. S. Vajjha, and D. K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transfer, vol. 52, pp. 4675–4682, 2009.
  • W. Duangthongsuk, and S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of water nanofluids, Thermal Fluid Sci., vol. 33, pp. 706–714, 2009.
  • M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol +water mixtures, J. Nanoparticle Research, vol. 12, pp. 1469–1477, 2010.
  • S. M. Fotukian, and M. N. Esfahany, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, Int. Commun. Heat Mass Transfer, vol. 37, pp. 214–219, 2010.
  • M. Hojjat, S. Gh. Etemad, R. Bagheri, and J. Thibault, Laminar convective heat transfer of non-newtonian nanofluids with constant wall temperature, Heat Mass Transfer, vol. 47, pp. 203–209, 2011.
  • S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, vol. 26, pp. 530–546, 2005.
  • M. Izadi, A. Behzadmehr, and D. Jalali-Vahida, Numerical study of developing laminar forced convection of a nanofluid in an annulus, Int. J. Therm. Sci., vol. 48, pp. 2119–2129, 2009.
  • A. K. Santra, S. Sen, and N. Chakraborty, Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates, Int. J. Therm. Sci., vol. 48, pp. 391–400, 2009.
  • B. Vincenzo, N. Sergio, and M. Oronzio, Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes, Nanoscale Res. Lett., vol. 6, pp. 252–264, 2011.
  • Y. T. Yang, Y. H. Wang, and P. K. Tseng, Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids, Int. Commun. Heat and Mass Transfer, vol. 51, pp. 9–17, 2014.
  • M. Akbari, N. Galanis, and A. Behzadmehr, Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer, Int. J. Therm. Sci., vol. 50, pp. 1343–1354, 2011.
  • B. Pak, and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Transfer, vol. 11, pp. 151–170, 1988.
  • Y. Xuan, and W. Roetzel, Conceptions for heat transfer correlation of Nanofluids, Int. J. Heat Mass Transfer, vol. 43, pp. 3701–3707, 2000.
  • S. E. B. Maiga, C. T. Nguyen, N. Galanis, and G. Roy, Heat transfer behaviors of nanofluids in a uniformly heated tube, Superlattices Microstruct., vol. 35, pp. 543–557, 2004.
  • S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, vol. 26, pp. 530–546, 2005.
  • B. E. Launder, and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London; 1972.
  • A. Behzadmehr, M. Saffar-Avval, and N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. Heat Fluid Flow, vol. 28, pp. 211–219, 2007.
  • M. Hejazian, and M. K. Moraveji, A comparative analysis of single and two-phase models of turbulent convective heat transfer in a tube for TiO2 nanofluid with CFD, Num. Heat Transfer Part A, vol. 63, pp. 795–806, 2013.
  • M. Manninen, V. Taivassalo, and S. Kallio, On the Mixture Model for Multiphase Flow, VTT Publications 288: Technical Research Center of Finland, 1996.
  • L. Schiller, and A. Naumann, A., Drag coefficient correlation, Zeitschrift Vereines Deutscher Ingenieure, vol. 77, pp. 318–325, 1935.
  • R. S. Hamid, and L. Mohammad, Numerical analysis of convective heat transfer for an elliptic pin fin heat sink with and without metal foam insert, ASME J. Heat Transfer, vol. 132, 071401, 2010.
  • G. E. P. Box, and N. R. Draper, Empirical Model-Building and Response Surface, John Wiley and Sons, Inc., New York, USA, 1987.
  • MATLAB User Manual, Version 6.5 Release 13, The Math Works, Inc. 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.