Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 9
255
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study on the effect of jet spacing on the Swirl flow and heat transfer in the turbine airfoil leading edge region

, , &
Pages 980-994 | Received 02 Feb 2016, Accepted 21 May 2016, Published online: 20 Oct 2016

References

  • F. Kreith and D. Margolis, Heat Transfer and Friction in Turbulent Vortex Flow, Appl. Sci. Res., vol. 8, pp. 457–473, 1959.
  • Y. M. Zhang, J. C. Han, and C. P. Lee, Heat Transfer and Fiction Characteristics of Turbulent Flow in Circular Tubes with Twisted-Tape Inserts and Axial Interrupted Ribs, J. Enhanced Heat Transfer, vol. 4, no. 4, pp. 297–308, 1997.
  • S. Wang, J. Wen, H. Yang, Y. Xue, and H. Tuo, Experimental Investigation on Heat Transfer Enhancement of a Heat Exchanger with Helical Baffles through Blockage of Triangle Leakage Zones, Appl. Therm. Eng., vol. 67, nos. 1–2, pp. 122–130, 2014.
  • W. T. Ji, D. C. Zhang, Y. L. He, and W. Q. Tao, Prediction of Fully Developed Turbulent Heat Transfer of Internal Helically Ribbed Tubes–An Extension of Gnielinski Equation, Int. J. Heat Mass Transfer, vol. 55, no. 4, pp. 1375–1384, 2012.
  • F. Kreith and O. K. Sonju, The Decay of a Turbulent Swirl in a Pipe, J. Fluid Mech., vol. 22, pp. 257–271, 1965.
  • A. H. Nissan and V. P. Bresan, Swirling Flow in Cylinders, A. I. Ch. E. J., vol. 7, pp. 543–547, 1961.
  • H. A. Blum and L. R. Oliver, Heat Transfer in a Decaying Vortex System, ASME Paper GT1966-WA/HT-62, 1966.
  • A. H. Algigeri, R. K. Bhardwaj, and Y. V. N. Rao, Prediction of the Decay Process in Turbulent Swirl Flow, Proc. Inst. Mech. Eng., vol. 201, pp. 279–283, 1987.
  • O. Kitoh, Experimental Study of Turbulent Swirling Flow in a Straight Pipe, J. Fluid Mech., vol. 225, pp. 445–479, 1991.
  • R. Kumar and T. Conover, Flow Visualization Studies of a Swirling Flow in a Cylinder, Exp. Therm. Fluid Sci., vol. 7, pp. 254–262, 1993.
  • H. Li and Y. Tomita, Characteristic of Swirling Flow in a Circular Pipe, ASME J. Fluids Eng., vol. 116, pp. 370–373, 1994.
  • A. Fitouri, M. K. Khan, and H. H. Bruun, A Multiposition Hot-Wire Technique for the Study of Swirling Flows in Vortex Chambers, Exp. Therm. Fluid Sci., vol. 10, pp. 142–151, 1995.
  • J. J. Chen, B. S. Haynes, and D. F. Fletcher, A Numerical and Experimental Study of Tangentially Injected Swirling Pipe Flows, Second International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 1999.
  • Z. Guo and V. K. Dhir, Effect of Injection Induced Swirl Flow on Single and Two-Phase Heat Transfer, ASME HTD., vol. 81, pp. 77–84, 1987.
  • V. K. Dhir and F. Chang, Heat Transfer Enhancement Using Tangential Injection, ASHRAE Trans., vol. 98, pp. 383–390, 1992.
  • F. Chang and V. K. Dhir, Turbulent Flow Field in Tangentially Injected Swirl Flows in Tubes, Int. J. Heat Fluid Flow, vol. 15, pp. 346–356, 1994.
  • F. Chang and V. K. Dhir, Mechanisms of Heat Transfer Enhancement and Slow Decay of Swirl in Tubes Using Tangential Injection, Int. J. Heat Fluid Flow, vol. 16, pp. 78–87, 1995.
  • H. Gül Enhancement of Heat Transfer in a Circular Tube with Tangential Swirl Generators, Exp. Heat Transfer, vol. 19, pp. 81–93, 2006.
  • N. Hay and P. D. West, Heat Transfer in Free Swirling Flow in a Pipe, ASME J. Heat Transfer, vol. 97, no. 3, pp. 411–416, 1975.
  • B. Glezer, H. K. Moon, and T. O’Connell, A Novel Technique for the Internal Blade Cooling, ASME Turbo EXPO 1996, Paper 96-GT-181, 1996.
  • H. K. Moon, T. O’Connell, and B. Glezer, Heat Transfer Enhancement in a Circular Channel Using Lengthwise Continue Tangential Injection, Proceedings of the 11th International Heat Transfer Congress, Vol.6, 1998.
  • P. M. Ligrani, C. R. Hedlund, B. T. Babinchak, R. Thambu, H. K. Moon, and B. Glezer, Flow Phenomena in Swirl Chambers, Exp. Fluids, vol. 24, pp. 254–264, 1998.
  • R. Thambu, B. T. Babinchak, P. M. Ligrani, C. R. Hedlund, H. K. Moon, and B. Glezer, Flow in a Simple Swirl Chamber With and Without Controlled Inlet Forcing, Exp. Fluids, vol. 26, pp. 347–357, 1999.
  • C. R. Hedlund, P. M. Ligrani, H. K. Moon, and B. Glezer, Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling, ASME J. Turbomach., vol. 121, pp. 804–813, 1999.
  • C. R. Hedlund, P. M. Ligrani, B. Glezer, and H. K. Moon, Heat Transfer in a Swirl Chamber at Different Temperature Ratios and Reynolds Numbers, Int. J. Heat Mass Transfer, vol. 42, pp. 4081–4091, 1999.
  • C. R. Hedlund and P. M. Ligrani, Local Swirl Chamber Heat Transfer, and Flow Structure at Different Reynolds Numbers, ASME J. Turbomach., vol. 122, pp. 375–385, 2000.
  • J. J. Hwang and C. S. Cheng, Augmented Heat Transfer in a Triangular Duct by Using Multiple Swirling Jets, ASME J. Heat Transfer, vol. 121, pp. 683–690, 1999.
  • J. J. Hwang and C. S. Cheng, Impingement Cooling in Triangular Ducts Using an Array of Side-Entry Wall Jets, Int. J. Heat Mass Transfer, vol. 44, pp. 1053–1063, 2001.
  • J. P. C. W. Ling, P. T. Ireland, and N. W. Harvey, Measurement of Heat Transfer Coefficient Distributions and Flow Field in a Model of a Turbine Blade Cooling Passage with Tangential Injection, ASME Turbo EXPO 2006, ASME Paper GT2006–90352, 2006.
  • Z. Liu, Z. P. Feng, and L. M. Song, Numerical Study of Flow and Heat Transfer Characteristics of Swirl Cooling on Leading Edge Model of Gas Turbine Blade, ASME Turbo EXPO 2011, ASME Paper GT2011–46125, 2011.
  • Z. Liu, J. Li, and Z. P. Feng, Numerical Study of Swirl Cooling in Turbine Blade Leading Edge Model, J. Thermophys. Heat Transfer, vol. 29, no. 1, pp. 166–178, 2015.
  • Z. Liu, J. Li, Z. P. Feng, and T. Simon, Numerical Study on the Effect of Jet Nozzle Aspect Ratio, and Jet Angle on Swirl Cooling in a Model of a Turbine Blade Leading Edge Cooling Passage, Int. J. Heat Mass Transfer, vol. 90, pp. 986–1000, 2015.
  • Z. Liu and Z. P. Feng, Numerical Simulation on the Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge, Int. J. Heat Mass Transfer, vol. 54, no. 23–24, pp. 4949–4959, 2011.
  • G. Lin, K. Kusterer, D. Bohn, T. Sugimoto, R. Tanaka, and M. Kazari, Investigation on Heat Transfer Enhancement and Pressure Loss of Double Swirl Chambers Cooling, Propul. Power Res., vol. 2, No. 3, pp. 177–187, 2013.
  • B. E. Launder and D. B. Spalding, The Numerical Computation of Turbulent Flows, Comput. Methods Appl. Mech. Eng., vol. 3, pp. 269–289, 1974.
  • P. J. Roache, Perspective: A Method for Uniform Reporting of Grid Refinement Studies, J. Fluids Eng., vol. 116, no. 3, pp. 405–413, 1994.
  • D. L. Gee and R. L. Webb, Forced Convection Heat Transfer in Helically Rib-Roughened Tubes, Int. J. Heat Mass Transfer, vol. 23, no. 8, pp. 1127–1136, 1980.
  • W. M. Kays, M. E. Crawford, and B. Weigand, Convective Heat and Mass Transfer, 4th ed., pp. 304, Tata McGraw-Hill Education, New York, 2012.
  • P. R. H. Blasius, Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten, Forschungsheft, vol. 131, pp. 1–41, 1913.
  • S. M. Ghiaasiaan, Convective Heat and Mass Transfer, First paperback edition 2014, Cambridge University Press, New York, pp. 493, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.