Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 10
125
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Statistical behavior of fuel mass fraction variance transport in turbulent flame–droplet interaction: A direct numerical simulation analysis

, &
Pages 1087-1100 | Received 04 Apr 2016, Accepted 13 Jul 2016, Published online: 24 Oct 2016

References

  • A. K. Tolpadi, S. K. Agarwal, and H. C. Mongia, An Advanced Spray Model for Application to the Prediction of Gas Turbine Combustor Flow Fields, Numer. Heat Trans. A, vol. 38, pp. 325–340, 2000.
  • F. M. Ashayek and G. B. Jacobs, Temperature-dependent Reaction in Droplet-laden Homogeneous Turbulence, Numer. Heat Trans. A, vol. 39, pp. 101–121, 2001.
  • K. Li and L. X. Zhou, Studies of the Effect of Spray Inlet Conditions on the Flow and Flame Structures of Ethanol-spray Combustion by Large-Eddy Simulation, Numer. Heat Trans. A, vol. 62, pp. 44–59, 2012.
  • G. Ribert, M. Champion, O. Gicquel, N. Darabiha, and D. Veynante, Modeling Nonadiabatic Turbulent Premixed Reactive Flows Including Tabulated Chemistry, Combust. Flame, vol. 141, pp. 271–280, 2005.
  • V. Robin, A. Mura, M. Champion, and P. Plion, A Multi-Dirac Presumed PDF Model for Turbulent Reacting Flows with Variable Equivalence Ratio, Combust. Sci. Technol., vol. 178, pp. 1843–1870, 2006.
  • A. Mura, V. Robin, and M. Champion, Modeling of Scalar Dissipation in Partially Premixed Turbulent Flames, Combust. Flame, vol. 149, pp. 217–224, 2007.
  • S. P. Malkeson and N. Chakraborty, A-priori Direct Numerical Simulation Analysis of Algebraic Models of Variances and Scalar Dissipation Rates for Reynolds Averaged Navier Stokes Simulations for Low Damköhler Number Turbulent Partially-premixed Combustion, Combust. Sci. Technol., vol. 182, pp. 960–999, 2010.
  • S. P. Malkeson and N. Chakraborty, The Modeling of Fuel Mass Fraction Variance Transport in Turbulent Stratified Flames: A Direct Numerical Simulation Study, Numer. Heat Trans. A., vol. 58, no. 3, pp. 187–206, 2010.
  • J. Réveillon and L. Vervisch, Spray Vaporization in Non-premixed Turbulent Combustion Modelling: A Single Droplet Model, Combust. Flame, vol. 121, pp. 75–90, 2000.
  • S. Sreedhara and Kang Y. Huh, Conditional Statistics of Nonreacting and Reacting Sprays in Turbulent Flows by Direct Numerical Simulation, Proc. Combust. Inst., vol. 31, pp. 2335–2342, 2007.
  • D. Wacks, N. Chakraborty, and E. Mastorakos, Statistical Analysis of Turbulent Flame-droplet Interaction: A Direct Numerical Simulation Study, Flow Turb. Combust., vol. 96, pp. 573–607, 2016.
  • E. Tarrazo, A. Sanchez, A. Linan, and F. Williams, A Simple One-step Chemistry Model for Partially Premixed Hydrocarbon Combustion, Combust. Flame, vol. 147, pp. 32–38, 2006.
  • A. Wandel, N. Chakraborty, and E. Mastorakos, Direct Numerical Simulation of Turbulent Flame Expansion in Fine Sprays, Proc. Combust. Inst., vol. 32, pp. 2283–2290, 2009.
  • A. Wandel, Extinction Predictors in Turbulent Sprays, Proc. Combust. Inst., vol. 34, pp. 1625–1632, 2013.
  • A. Wandel, Influence of Scalar Dissipation on Flame Success in Turbulent Sprays with Spark Ignition, Combust. Flame, vol. 161, pp. 2579–2600, 2014.
  • Y. Wang and C. J. Rutland, Effects of Temperature and Equivalence Ratio on the Ignition of n-heptane Fuel Spray in Turbulent Flow, Proc. Combust. Inst., vol. 30, pp. 893–900, 2005.
  • T. Poinsot and S. K. Lele, Boundary Conditions for Direct Simulation of Compressible Viscous Flows, J. Comput. Phys., vol. 101, pp. 104–129, 1992.
  • Rotexo-Softpredict-Cosilab, GmbH and Co. KG Bad Zwischenahn, Germany.
  • A. Neophytou, and E. Mastorakos, Simulations of Laminar Flame Propagation in Droplet Mists. Combust. Flame, vol. 156, pp. 1627–1640, 2009.
  • R. S. Rogallo, Numerical Experiments in Homogeneous Turbulence, NASA Technical Memorandum 81315, NASA Ames Research Center, 1981.
  • G. K. Batchelor and A. A. Townsend, Decay of Turbulence in the Final Period, Proc. Roy. Soc. A, vol. 194, pp. 527–543, 1948.
  • I. Han and K. H. Huh, Roles of Displacement Speed on Evolution of Flame Surface Density for Different Turbulent Intensities and Lewis Numbers in Turbulent Premixed Combustion, Combust. Flame, vol. 152, pp. 194–205, 2008.
  • H. Reddy and J. Abraham, Two-Dimensional Direct Numerical Simulation Evaluation of the Flame Surface Density Model for Flames Developing from an Ignition Kernel in Lean Methane/Air Mixtures under Engine Conditions, Phys. Fluids, vol. 24, 105108, 2012.
  • C. Pera, S. Chevillard, and J. Reveillon, Effects of Residual Burnt Gas Heterogeneity on Early Flame Propagation and on Cyclic Variability in Spark-ignited Engines, Combust. Flame, vol. 160, pp. 1020–1032, 2013.
  • C. Dopazo, L. Cifuentes, J. Martin, and C. Jimenez, Strain Rates Normal to Approaching Iso-scalar Surfaces in a Turbulent Premixed Flame, Combust. Flame, vol. 162, 1729–1736, 2014.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion. R.T. Edwards, Philadelphia, U.S.A., 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.