Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 10
290
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Internal fluidity of a sessile droplet with the presence of particles on a hydrophobic surface

, , &
Pages 1118-1140 | Received 01 May 2016, Accepted 09 Aug 2016, Published online: 20 Oct 2016

References

  • J. Xin and C. M. Megaridis, Calculations of Tandem Droplet Arrays Evaporating Near a Vertical Hot Plate, Numer. Heat Transfer, Part A, vol. 27, pp. 211–228, 2007.
  • S. Sharafatmandjoor, M. Taeibi-Rahni, and Nor A. C. Sidik, Formation and Breakup Patterns of Falling Droplets, Numer. Heat Transfer, Part A, vol. 68, pp. 1023–1030, 2015.
  • M. Kaneda, Y. Matsushima, and K. Suga, Magnetic Convection Inside a Polymer Solution Droplet on a Lyophobic Surface, Numer. Heat Transfer, Part A, vol. 59, pp. 98–113, 2011.
  • Y. Suh and G. Son, Numerical Simulation of Droplet Deposition and Self-Alignment on a Microstructured Surface, Numerical Heat Transfer, Part A, vol. 57, pp. 415–430, 2010.
  • H. S. Fang, K. Bao, J. A. Wei, H. Zhang, E. H. Wu, and L. L. Zheng, Simulations of Droplet Spreading and Solidification Using an Improved SPH Model, Numer. Heat Transfer, Part A, vol. 55, pp. 124–143, 2009.
  • S. Bhattacharyya and A. K. Singh, Wake Flow and Heat Transfer Due to a Spherical Viscous Droplet, Numer. Heat Transfer, Part A, vol. 57, pp. 138–158, 2010.
  • N. S. Beattie, R. S. Moir, C. Chacko, G. Buffoni, and S. H. Roberts, and N. M. Pearsall, Understanding the Effects of Sand and Dust Accumulation on Photovoltaic Modules, Renewable Energy, vol. 48, pp. 448–452, 2012.
  • B. Bhushan, Y. C. Jung, and K. Koch K., Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces, Langmuir, vol. 25, pp. 3240–3248, 2009.
  • B. S. Yilbas, A. Haider, M. Khaled, N. Al-Aqeeli, and N. Abu-Dheir, K. Varanasi, Influence of Dust and Mud on the Optical, Chemical, and Mechanical Properties of a PV Protective Glass, Nat. Sci. Rep., doi:10.1038/srep15833,2015.
  • A. J. Petsi, A. N. Kalarakis, and V. N. Burganos, Deposition of Brownian Particles During Evaporation of Two-Dimensional Sessile Droplets, Chem. Eng. Sci., vol. 65, no. 10, pp. 2978–2989, 2010.
  • S. J. Kim, K. H. Kang, I. S. Kang, and B. J. Yoon, Control of Particle-Deposition Pattern in a Sessile Droplet by using the Radial Electroosmotic Flow, Micro Total Analysis Systems - Proceedings of MicroTAS 2005 Conference: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, vol. 1, pp. 563–565, 2005.
  • R. M. Barmi and C. D. Meinhart, Convective Flows in Evaporating Sessile Droplets, J. Phys. Chem. B, vol. 118, no. 9, pp. 2414–2421, 2014.
  • R. De Dier, W. Sempels, J. Hofkens, and J. Vermant, Thermocapillary Fingering in Surfactant-Laden Water Droplets, Langmuir, vol. 30, no. 44, pp. 13338–13344, 2014.
  • A. K. Thokchom, A. Gupta, P. J. Jaijus, and P. A. Singh, Analysis of Fluid Flow and Particle Transport in Evaporating Droplets Exposed to Infrared Heating, Int. J. Heat Mass Transfer, vol. 68, pp. 67–77, 2014.
  • X. Gao and R. Li, Spread and Recoiling of Liquid Droplets Impacting Solid Surfaces, AIChE J., vol. 60, no. 7, pp. 2683–2691, 2014.
  • X. Li, X. Ma, and Z. Lan, Behavioral Patterns of Drop Impingement onto Rigid Substrates with a Wide Range of Wettability and Different Surface Temperatures, AIChE J., vol. 55, no. 8, pp. 1983–1992, 2009.
  • T. K. Pradhan, and P. K. Panigrahi, Thermocapillary Convection Inside a Stationary Sessile Water Droplet on a Horizontal Surface with an Imposed Temperature Gradient, Exp. Fluids, vol. 56, no. 9. doi:10.1007/s00348-015-2051-2, 2015.
  • M. Krause, J. Blum, Yu. V. Skorov, and M. Trielo, Thermal Conductivity Measurements of Porous Dust Aggregates: I. Technique Model, and Final Results, Icarus, vol. 214, no. 1, pp. 286(11), 2011.
  • Gui Lu, Yuan-Yuan Duan, Xiao-Dong Wang, and Duu-Jong Lee, Internal Flow in Evaporating Droplet on Heated Solid Surface, Int. J. Heat Mass Transfer, vol. 54, pp. 4437–4447, 2011.
  • S. A. Morsi and A. J. Alexander, An Investigation of Particle Trajectories in Two- Phase Flow Systems, J. Fluid Mech., vol. 55, no. 2, pp. 193–208, 1972.
  • V. Vand, Theory of Viscosity of Concentrated Suspensions, Nature, vol. 155, pp. 364–365, 1945.
  • F. Yutang, K. Shengyan, G. Xuenong, and Z. Zhengguo, Preparation of Nanoencapsulated Phase Change Material as Latent Functionally Thermal Fluid, J. Phys. D, vol. 42, no. 3, pp. 035407(8), 2009.
  • G. Yali, W. Lan, S. Shengqiang, and C. Guiying, Simulation of Dynamic Characteristics of Droplet Impact on Liquid Film, Int. J. Low-Carbon Technol., vol. 9, no. 2, pp. 150–156, 2014.
  • J. A. Maroto, V. Perez-Muñuzuri, and M. S. Romero-Cano, Introductory Analysis of Benard–Marangoni Convection, Eur. J. Phys., vol. 28, no. 2, pp. 311–320, 2007.
  • http://hpc.mtech.edu/comsol/pdf/Particle_Tracing_Module/ParticleTracingModuleUsersGuide.pdf, 2016.
  • http://www.comsol.com/comsol-multiphysics, 2016.
  • http://www.engineeringtoolbox.com/specific-heat-solids-d_154.html, 2016.
  • Q. He and D. Jiao, Explicit and Unconditionally Stable Time-Domain Finite-Element Method with a More than “Optimal” Speedup, Electromagnetics, vol. 34, pp. 199–204, 2014.
  • Y. Cui, A. T. Paxson, K. M. Smyth, and K. K. Varanasi, Hierarchical Polymeric Textures via Solvent-induced Phase Transformation: A Single-Step Production of Large-Area Superhydrophobic Surfaces, Colloids Surfaces A, vol. 394, no. 20, pp. 8–13, 2012.
  • A. Al Sharafi, A. Z. Sahin, B. S. Yilbas, and S. Z. Shuja, Marangoni-Convection Flow and Heat Transfer Characteristics of Water-CNT Nanofluid Droplet, Numer. Heat Transfer, vol. 69, no. 7, pp. 763–780, 2016.
  • M. A. Alghamdi, M. Almazroui, M. Shamy, M. A. Reda, A. K. Alkhalaf, M. A. Hussein, and M. I. Khoder, Characterization and Elemental Composition of Atmospheric Aerosol Loads During Springtime Dust Storm in Western Saudi Arabia, Aerosol Air Qual. Res., vol. 15, pp. 440–453, 2015.
  • S. Chandrasekhar, Hydrodynamic and Hydrodynamic Stability, Clarendon Press, Oxford, 1961.
  • P. G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, 2004.
  • Akira Nakajima, Design of Hydrophobic Surfaces for Liquid Droplet Control, NPG Asia Materials, vol. 3, pp. 49–56, 2011.
  • D. Tam, V. von Arnim, G. H. McKinley, and A. E. Hosoi, Marangoni Convection in Droplets on Superhydrophobic Surfaces, J. Fluid Mechanics, Vol. 624, no. 1, pp. 101—123, 2009.
  • H. Gelderblom, O. Bloemen, and J. H. Snoeijer, Stokes Flow Near the Contact Line of an Evaporating Drop, J. Fluid Mech., vol. 709, pp. 69–84, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.