Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 10
354
Views
117
CrossRef citations to date
0
Altmetric
Original Articles

Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids

&
Pages 1141-1156 | Received 13 Apr 2016, Accepted 09 Aug 2016, Published online: 20 Oct 2016

References

  • S. Chol, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME-Publ.-Fed, vol. 231, pp. 99–106, 1995.
  • T. Tayebi, M. Djezzar, and K. Saadaoui, Effect of Sinusoidal Thermal Boundary Condition on Natural Convection in a Cavity Filled with Cu-Water Nanofluid, J. Nanofluids, vol. 2, pp. 120–126, 2013.
  • T. Tayebi and M. Djezzar, Numerical Study of Natural Convection Flow in a Square Cavity with Linearly Heating on Bottom Wall Using Copper-Water Nanofluid, J. Nanofluids, vol. 4, pp. 38–49, 2015.
  • M. Mansour, M. Bakeir, and A. Chamkha, Numerical Modeling of Natural Convection of a Nanofluid Between Two Enclosures, J. Nanofluids, vol. 3, pp. 368–379, 2014.
  • E. Abu-Nada and A. J. Chamkha, Effect of Nanofluid Variable Properties on Natural Convection In Enclosures Filled with a CuO–EG–water Nanofluid, Int. J. Therm. Sci., vol. 49, pp. 2339–2352, 2010.
  • E. Abu-Nada and A. J. Chamkha, Mixed Convection Flow in a Lid-Driven Inclined Square Enclosure Filled with a Nanofluid, Eur. J. Mech.-B/Fluids, vol. 29, pp. 472–482, 2010.
  • T. Basak and A. J. Chamkha, Heatline Analysis on Natural convection for Nanofluids Confined Within Square Cavities with Various Thermal Boundary Conditions, Int. J. Heat Mass Transfer, vol. 55, pp. 5526–5543, 2012.
  • A. A. J. Chamkha and E. Abu-Nada, Mixed Convection Flow in Single-and Double-lid Driven Square Cavities Filled with Water–Al2O3 Nanofluid: Effect of Viscosity Models, Eur. J. Mech.-B/Fluids, vol. 36, pp. 82–96, 2012.
  • A. J. Chamkha and M. A. Ismael, Conjugate Heat Transfer in a Porous Cavity Filled with Nanofluids and Heated by a Triangular Thick Wall, Int. J. Therm. Sci., vol. 67, pp. 135–151, 2013.
  • S. Suresh, K. Venkitaraj, P. Selvakumar, and M. Chandrasekar, Synthesis of Al2O3–Cu/water Hybrid Nanofluids Using Two Step Method and Its Thermo Physical Properties, Colloids Surf., A, vol. 388, pp. 41–48, 2011.
  • P. Jena, E. Brocchi, and M. Motta, In-Situ Formation of Cu–Al2O3 Nano-Scale Composites by Chemical Routes and Studies on Their Microstructures, Mater. Sci. Eng., A, vol. 313, pp. 180–186, 2001.
  • M. J. Nine, M. Batmunkh, J.-H. Kim, H.-S. Chung, and H.-M. Jeong, Investigation of Al2O3-MWCNTs Hybrid Dispersion in Water and Their Thermal Characterization, J. Nanosci. Nanotechnol., vol. 12, pp. 4553–4559, 2012.
  • M. J. Nine, B. Munkhbayar, M. S. Rahman, H. Chung, and H. Jeong, Highly Productive Synthesis Process of Well Dispersed Cu2O and Cu/Cu2O Nanoparticles and its Thermal Characterization, Mater. Chem. Phys., vol. 141, pp. 636–642, 2013.
  • T. T. Baby and R. Sundara, Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids, J. Phys. Chem. C, vol. 115, pp. 8527–8533, 2011.
  • J. Sarkar, P. Ghosh, and A. Adil, A Review on Hybrid Nanofluids: Recent Research, Development and Applications, Renew. Sustain. Energy Rev., vol. 43, pp. 164–177, 2015.
  • T. Takabi and S. Salehi, Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid, Adv. Mech. Eng., vol. 6, p. 147059, 2014.
  • B. Takabi, A. M. Gheitaghy, and P. Tazraei, Hybrid Water-Based Suspension of Al2O3 and Cu Nanoparticles on Laminar Convection Effectiveness, J. Thermophys. Heat Transfer, vol. 30, no. 3, pp. 523–532, 2016.
  • R. Nasrin and M. Alim, Finite Element Simulation of Forced Convection in a Flat Plate Solar Collector: Influence of Nanofluid with Double Nanoparticles, J. Appl. Fluid Mech., vol. 7, pp. 543–556, 2014.
  • S. S. U. Devi and S. A. Devi, Numerical Investigation of Three-Dimensional Hybrid Cu–Al2O3/water Nanofluid Flow over a Stretching Sheet with Effecting Lorentz Force Subject to Newtonian Heating, Can. J. Phys., vol. 94, pp. 490–496, 2016.
  • H. Togun, T. Abdulrazzaq, S. Kazi, A. Badarudin, A. Kadhum, and E. Sadeghinezhad, A Review of Studies on Forced, Natural and Mixed Heat Transfer to Fluid and Nanofluid Flow in an Annular Passage, Renew. Sustainable Energy Rev., vol. 39, pp. 835–856, 2014.
  • E. Abu-Nada, Z. Masoud, and A. Hijazi, Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli Using Nanofluids, Int. Commun. Heat Mass Transfer, vol. 35, pp. 657–665, 2008.
  • R. Nasrin, M. Alim, and A. J. Chamkha, Effect of Viscosity Variation on Natural Convection Flow of Water–Alumina Nanofluid in an Annulus with Internal Heat Generation, Heat Transfer Asian Res., vol. 41, pp. 536–552, 2012.
  • M. H. Matin and I. Pop, Natural Convection Flow and Heat Transfer in an Eccentric Annulus Filled by Copper Nanofluid, Int. J. Heat Mass Transfer, vol. 61, pp. 353–364, 2013.
  • A. A. Mehrizi, M. Farhadi, and S. Shayamehr, Natural Convection Flow of Cu–Water Nanofluid in Horizontal Cylindrical Annuli with Inner Triangular Cylinder Using Lattice Boltzmann Method, Int. Commun. Heat Mass Transfer, vol. 44, pp. 147–156, 2013.
  • M. Izadi, M. Shahmardan, and A. Behzadmehr, Richardson Number Ratio Effect on Laminar Mixed Convection of a Nanofluid Flow in an Annulus, Int. J. Comput. Methods Eng. Sci. Mech., vol. 14, pp. 304–316, 2013.
  • M. Sheikholeslami, M. Gorji-Bandpy, and D. Ganji, MHD Free Convection in an Eccentric Semi-Annulus filled with Nanofluid, J. Taiwan Inst. Chem. Eng., vol. 45, pp. 1204–1216, 2014.
  • M. H. Matin and I. Pop, Numerical Study of Mixed Convection Heat Transfer of a Nanofluid in an Eccentric Annulus, Numer. Heat Transfer, Part A, vol. 65, pp. 84–105, 2014.
  • S. Seyyedi, M. Dayyan, S. Soleimani, and E. Ghasemi, Natural Convection Heat Transfer Under Constant Heat Flux Wall in a Nanofluid Filled Annulus Enclosure, Ain Shams Eng. J., vol. 6, pp. 267–280, 2015.
  • M. Arbaban and M. Salimpour, Enhancement of Laminar Natural Convective Heat Transfer in Concentric Annuli with Radial Fins using Nanofluids, Heat Mass Transfer, vol. 51, pp. 353–362, 2015.
  • R. Mokhtari Moghari, F. Talebi, R. Rafee, and M. Shariat, Numerical Study of Pressure Drop and Thermal Characteristics of Al2O3–Water Nanofluid Flow in Horizontal Annuli, Heat Transfer Eng., vol. 36, pp. 166–177, 2015.
  • J. H. Lee and T. S. Lee, Natural Convection in the Annuli Between Horizontal Confocal Elliptic Cylinders, Int. J. Heat Mass Transfer, vol. 24, pp. 1739–1742, 1981.
  • W. C. Schreiber and S. N. Singh, Natural Convection Between Confocal Horizontal Elliptical Cylinders, Int. J. Heat Mass Transfer, vol. 28, pp. 807–822, 1985.
  • M. Elshamy, M. Ozisik, and J. Coulter, Correlation for Laminar Natural Convection Between Confocal Horizontal Elliptical Cylinders, Numerical Heat Transfer, vol. 18, pp. 95–112, 1990.
  • C.-H. Chengm and C.-C. Chao, Numerical Prediction of the Buoyancy-Driven Flow in the Annulus between Horizontal Eccentric Elliptical Cylinders, Numer. Heat Transfer, Part A Appl., vol. 30, pp. 283–303, 1996.
  • J. Mota, I. Esteves, C. Portugal, J. Esperança, and E. Saatdjian, Natural Convection Heat Transfer in Horizontal Eccentric Elliptic Annuli Containing Saturated Porous Media, Int. J. Heat mass Transfer, vol. 43, pp. 4367–4379, 2000.
  • K. Hirose, T. Hachinohe, and Y. Ishii, Natural Convection Heat Transfer in Eccentric Horizontal Annuli Between a Heated Outer Tube and a Cooled Inner Tube with Different Orientation: The Case of an Elliptical Outer Tube, Heat Transfer Asian Res., vol. 30, pp. 624–635, 2001.
  • Y. Zhu, C. Shu, J. Qiu, and J. Tani, Numerical Simulation of Natural Convection Between Two Elliptical Cylinders Using DQ Method, Int. J. Heat Mass Transfer, vol. 47, pp. 797–808, 2004.
  • K. Zerari, M. Afrid, and D. Groulx, Forced and Mixed Convection in the Annulus between Two Horizontal Confocal Elliptical Cylinders, Int. J. Therm. Sci., vol. 74, pp. 126–144, 2013.
  • A. Bouras, M. Djezzar, H. Naji, and C. Ghernoug, Numerical Computation of Double-Diffusive Natural Convective Flow within an Elliptic Shape Enclosure, Int. Commun. Heat Mass Transfer, vol. 57, pp. 183–192, 10, 2014.
  • M. Izadi, A. Behzadmehr, and D. Jalali-Vahida, Numerical Study of Developing Laminar Forced Convection of a Nanofluid in an Annulus, Int. J. Therm. Sci., vol. 48, pp. 2119–2129, 2009.
  • H. Dawood, H. Mohammed, and K. Munisamy, Heat Transfer Augmentation Using Nanofluids in an Elliptic Annulus with Constant Heat Flux Boundary Condition, Case Stud. Therm. Eng., vol. 4, pp. 32–41, 2014.
  • P. Moon, and D.E. Spencer, Field Theory Handbook, Springer-Verlag, New York, NY, 1971.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, New York, NY, 1980.
  • E. F. Nogotov, Applications of Numerical Heat Transfer, NASA STI/Recon Tech Rep. A, vol. 79, p. 14672, 1978.
  • H. Brinkman, The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys., vol. 20, pp. 571–571, 1952.
  • J. C. Maxwell, >A Treatise on Electricity and Magnetism. Vol. 1. Clarendon Press, Oxford, UK, 1881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.