Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 11
172
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical optimizations of hybrid-linked jet impingement heat transfer based on the genetic algorithm

, , &
Pages 1179-1194 | Received 10 May 2016, Accepted 05 Sep 2016, Published online: 28 Nov 2016

References

  • B. Han and R. J. Goldstein. Jet-impingement Heat Transfer in Gas Turbine Systems, Int. Symp. Heat Transfer Gas Turbine Syst. (Turbine 2000), New York Acad Sciences, New York vol. 934, pp. 147–161, 2001.
  • R. Viskanta, Heat Transfer to Impinging Isothermal Gas and Flame Jets, Exp. Therm. Fluid Sci., vol. 6, no. 2, pp. 111–134, 1993.
  • L. W. Florschuetz, R. A. Berry, and D. E. Metzger, Streamwise Flow and Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air, ASME J. Heat Trans., vol. 102, pp. 132–137, 1981.
  • N. Zuckerman and N. Lior, Impingement Heat Transfer: Correlations and Numerical Modeling, ASME J. Heat Trans., vol. 127, no. 5, pp. 544–552, 2005.
  • J. C. Han, S. Dutta, and S. V. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, CRC Press, Florida, US, Chap. 5, 2013.
  • M. Ricklick and J. S. Kapat, Determination of A Local Bulk Temperature Based Heat Transfer Coefficient for the Wetted Surfaces in A Single Inline Row Impingement Channel. ASME J. Turbomach., vol. 133, no. 3, 031008-1–031008-10, 2010.
  • M. Ricklick, R. Claretti, and J. S. Kapat, Channel Height and Jet Spacing Effect on Heat Transfer and Uniformity Coefficient on an Inline Row Impingement Channel. ASME Paper No. GT-2010–23757, 2010.
  • M. Ricklick, S. Kersten, V. Krishnan, and J. S. Kapat, Effects of Channel Height and Bulk Temperature Considerations on Heat Transfer Coefficient of Wetted Surfaces in A Single Inline Row Impingement Channel, ASME Paper No. HT-2008–56323, 2009.
  • M. E. Taslim and D. Bethka, Experimental, and Numerical Impingement Heat Transfer in An Airfoil Leading-edge Cooling Channel with Cross-flow, ASME J. Turbomach., vol. 131, no. 1, p. 011021, 2009.
  • M. E. Taslim and A. Khanicheh, Experimental and Numerical Study of Impingement on An Airfoil Leading Edge With and Without Showerhead and Gill Film Holes, ASME J. Turbomach., vol. 128, no. 2, pp. 310–320, 2006.
  • M. E. Taslim, K. Bakhtari, and H. Liu, 2003, Experimental and Numerical Investigation of Impingement on A Rib-roughened Leading-edge Wall, ASME J. Turbomach., vol. 125, no. 4, pp. 682–691.
  • J. A. Parsons, J. Han, and C. P. Lee, Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels with Four Heated Walls and Film Coolant Extraction, ASME Paper No. GT- 2003–38905, 2003.
  • J. Kreatsoulas, J. Kerrebrock, A. Epstein, and C. Rogo, Experimental Data Correlations for The Effects of Rotation on Impingement Cooling of Turbine Blades, 23rd Joint Propulsion Conference, San Diego, California, Paper No. AIAA-87–2008, 1987.
  • J. Kreatsoulas, J. Kerrebrock, A. Epstein, and C. Rogo, Effects of Rotation on Impingement Cooling of Turbine Blades, 21st Joint Propulsion Conference, Monterey, California, Paper No. AIAA-85–1217, 1985.
  • C. A. Elston and L. M. Wright, Leading Edge Jet Impingement under High Rotation Numbers, ASME Paper No. IMECE-2012–88332, 2012.
  • L. M. Wright and C. A. Elston, Experimental Investigation of Heat Transfer in A Leading Edge, Two-Pass Serpentine Passage at High Rotation Numbers, ASME Paper No. HT-2012–58360, 2012.
  • S. K. Hong, D. H. Lee, and H. H. Cho, Heat/mass Transfer in Rotating Impingement/effusion Cooling with Rib Turbulators, Int. J. Heat Mass Transfer, vol. 52, no. 13–14, pp. 3109–3117, 2009.
  • S. K. Hong, D. H. Lee, and H. H. Cho, Effect of Jet Direction on Heat/mass Transfer of Rotating Impingement Jet, Appl. Therm. Eng., vol. 29, no. 14–15, pp. 2914–2920, 2009.
  • S. K. Hong, D. H. Lee, and H. H. Cho, Heat/mass Transfer Measurement on Concave Surface in Rotating Jet Impingement, J. Mech. Sci. Technol., vol. 22, no. 10, pp. 1952–1958, 2008.
  • J. A. Lamont, S. V. Ekkad, and M. A. Alvin, Detailed Heat Transfer Measurements Inside Rotating Ribbed Channels Using the Transient Liquid Crystal Technique, ASME J. Therm. Sci. Eng. Appl., vol. 4, no. 1, p. 011002, 2012.
  • J. A. Lamont, S. V. Ekkad, and M. A. Alvin, Effects of Rotation on Heat Transfer for A Single Row Jet Impingement Array with Crossflow, ASME J. Heat Transfer, vol. 134, no. 8, p. 082202, 2012.
  • J. A. Lamont, S. V. Ekkad, and M. A. Alvin, Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow, ASME J. Heat Transfer, vol. 136, no. 1, p. 011901, 2014.
  • J. Haumann, A. Knopfli, T. Sattelmayer, and R. Tresch, Apparatus for Impingement Cooling, US patent 5,467,815, 1995.
  • H. S. Correia, Impingement Cooling Apparatus for Turbine Shrouds Having Ducts of Increasing Cross-Section Area in the Direction of Post-Impingement Cooling Flow, US Patent 5480281, 1996.
  • R. S. Bunker and T. T. Wallace, Turbine Airfoil with Double Shell Outer Wall, US Patent 5,328,331, 1994.
  • E. I. Esposito, S. V. Ekkad, Y. Kim, and P. Dutta, Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling, J. Therm. Sci. Eng. Appl., vol. 1, pp. 021001–021008, 2009.
  • Z. R. Chi, R. Kan, J. Ren, and H. D. Jiang, Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure, Int. J. Heat Mass Transfer, vol. 64, pp. 567–580, 2013.
  • R. L. Fox, Optimization Methods for Engineering Design. Mater’s Thesis. Reading, Mass: Addison-Wesley, 1971.
  • G. S. Dulikravich, T. J. Martin, and B. H. Dennis. Multidisciplinary Hybrid Constrained GA Optimization, Evolutionary Algorithms in Engineering and Computer Science. Mater’s Thesis. Recent Advances and Industrial Applications. Wiley & Sons, 1999.
  • F. Coletti, T. Verstraete, and T. Vanderwielen, Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels: Part II—Experimental Validation. ASME Paper No. GT2011–46555, 2011.
  • J. J. Johnson, P. I. King, and J. P. Clark, Genetic Algorithm Optimization of an HPT Vane Pressure Side Film Cooling Array. ASME Paper No. GT2012–68049, 2012.
  • M. Kaushal, P. Dhiman, S. Singh, and H. Patel, Finite Volume and Response Surface Methodology based Performance Prediction and Optimization of a Hybrid Earth to Air Tunnel Heat Exchanger, Energy Build., vol. 104, pp. 25–35, 2015.
  • D. X. Li, P. F. Feng, J. F. Zhang, Z. J. Wu, and D. W. Yu, Method for Modifying Convective Heat Transfer Coefficients used in the Thermal Simulation of a Feed Drive System based on the Response Surface Methodology, Numer. Heat Transfer, vol. 69, pp. 51–66, 2016.
  • M. Shanbedi, S. Z. Heris, A. Maskooki, and Eshghi, H., 2014. Statistical Analysis of Laminar Convective Heat Transfer of MWCNT-Deionized Water Nanofluid using the Response Surface Methodology, Numer. Heat Transfer, vol. 68, pp. 454–469.
  • L. Yang, P. M. Ligrani, J. Ren, and H. D. Jiang, Unsteady Structure and Development of a Row of Impingement Jets, Including Kelvin-Helmholtz Vortex Development, ASME J. Fluid Eng., Vol. 137, May 2015, pp. 051201–1.
  • L. Yang, Y. Z. Li, P. M. Ligrani, J. Ren, H. D. Jiang, Unsteady Heat Transfer and Flow Structure of A Row of Laminar Impingement Jets, including Vortex Development, Int. J. Heat Mass Transfer, Vol. 88, September 2015, pp. 149–164.
  • L. Yang, J. Ren, H. D. Jiang, and P. M. Ligrani, Experimental, and Numerical Investigation of Unsteady Impingement Cooling within a Blade Leading Edge Passage, Int. J. Heat Mass Transfer, Vol. 71, pp. 57–68, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.