Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 2
537
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Thin-film evaporation on microgrooved heatsinks

, &
Pages 111-127 | Received 30 May 2016, Accepted 12 Oct 2016, Published online: 05 Jan 2017

References

  • A. Shooshtari, R. Mandel, and M. Ohadi, Cooling of Next Generation Electronics for Diverse Applications, in S. Anwar (ed.), Encyclopedia of Energy Engineering and Technology, vol. 1, Taylor and Francis, New York, 2012.
  • DARPA, “Intrachip/Interchip Enhanced Cooling Fundamentals (ICECool Fundamentals),” in DARPA-BAA-12-50, 2012. https://www.fbo.gov/index?s=opportunity&mode=form&id=d8db5ea850b52ec3a5ebc2649e11f798&tab=core&_cview=1 (accessed 1 May 2016)
  • S. Hasebe, N. Shikazono, and N. Kasagi, Modeling and Design of Micro Groove Falling Film Evaporators, ASME 2004 2nd Int. Conf. Microchannels Minichannels, Rochester NY, USA, pp. 453–459, ASME, 2004.
  • P. C. Stephan and C. A. Busse, Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls, Int. J. Heat Mass Transfer, vol. 35, pp. 383–391, 1992.
  • H. Ma and G. Peterson, Temperature Variation and Heat Transfer in Triangular Grooves with an Evaporating Film, J. Thermophy. Heat Transfer, vol. 11, pp. 90–97, 1997.
  • R. K. Mandel, M. M. Ohadi, A. Shooshtari, and S. V. Dessiatoun, Thin Film Evaporation on Microstructured Surfaces—Application to Cooling High Heat Flux Electronics, 27th Semicond. Therm. Meas. Manage. Symp., San Jose CA, USA, pp. 138–145, IEEE, 2011.
  • R. Ranjan, J. Murthy, S. Garimella, and U. Vadakkan, A Numerical Model for Transport in Flat Heat Pipes Considering Wick Microstructure Effects, Int. J. Heat Mass Transfer, vol. 54, pp. 153–168, 2011.
  • H. Wang, S. V. Garimella, and J. Y. Murthy, Characteristics of an Evaporating Thin Film in a Microchannel, Int. J. Heat Mass Transfer, vol. 50, pp. 3933–3942, 2007.
  • S.-Y. Du and Y.-H. Zhao, New Boundary Conditions for the Evaporating Thin-Film Model in a Rectangular Micro Channel, Int. J. Heat Mass Transfer, vol. 54, pp. 3694–3701, 2011.
  • K. Park, K. Noh, and K. Lee, Transport Phenomena in the Thin-Film Region of a Micro-Channel, Int. J. Heat Mass Transfer, vol. 46, pp. 2381–2388, 2003.
  • R. Bertossi, Z. Lataoui, V. Ayel, C. Romestant, and Y. Bertin, Modeling of Thin Liquid Film in Grooved Heat Pipes, Numer. Heat Transfer, Part A: Appl., vol. 55, pp. 1075–1095, 2009.
  • L. Biswal, S. K. Som, and S. Chakraborty, Thin Film Evaporation in Microchannels with Slope- and Curvature-Dependent Disjoining Pressure, Int. J. Heat and Mass Transfer, vol. 57, pp. 402–410, 2013.
  • M. Hanchak, M. Vangsness, L. Byrd, and J. Ervin, Thin Film Evaporation of n-octane on Silicon: Experiments and Theory, Int. J. Heat Mass Transfer, vol. 75, pp. 196–206, 2014.
  • J. A. Schonberg and P. C. Wayner Jr, Analytical Solution for the Integral Contact Line Evaporative Heat Sink, J. Thermophys. Heat Transfer, vol. 6, pp. 128–134, 1992.
  • P. C. Wayner, Y. K. Kao, and L. V. LaCroix, The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film, Int. J. Heat Mass Transfer, vol. 19, pp. 487–492, 1976.
  • J. M. Ha and G. P. Peterson, The Interline Heat Transfer of Evaporating Thin Films Along a Micro Grooved Surface, J. Heat Transfer, vol. 118, pp. 747–755, 1996.
  • X. Xu and V. P. Carey, Film Evaporation from a Micro-Grooved Surface-An Approximate Heat Transfer Model and its Comparison with Experimental Data, J. Thermophys. Heat Transfer, vol. 4, pp. 512–520, 1990.
  • R. W. Schrage, A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York, 1953.
  • A. Faghri, Heat pipe science and technology, Taylor & Francis, Washington, DC, 1995.
  • V. P. Carey, Liquid-Vapor Phase Change Phenomena, Hemisphere Publishing House, New York, 1992.
  • K. Do, S. Kim, and S. Garimella, A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe with a Grooved Wick, Int. J. Heat Mass Transfer, vol. 51, pp. 4637–4650, 2008.
  • Q. Qu and T. Ma, Characteristics of Two-Phase Flow and Evaporation Heat Transfer in a Capillary at Constant Heat Fluxes, Microscale Thermophys. Eng., vol. 6, pp. 191–207, 2002.
  • W. Qu, T. Ma, J. Miao, and J. Wang, Effects of Radius and Heat Transfer on the Profile of Evaporating Thin Liquid Film and Meniscus in Capillary Tubes, Int. J. Heat Mass Transfer, vol. 45, pp. 1879–1887, 2002.
  • C. Yan and H. Ma, Analytical Solutions of Heat Transfer and Film Thickness in Thin-Film Evaporation, J. Heat Transfer, vol. 135, pp. 031501, 2013.
  • H. Wang, S. Garimella, and J. Murthy, An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus, Int. J. Heat Mass Transfer, vol. 51, pp. 6317–6322, 2008.
  • J. G. Truong and P. C. Wayner Jr., Effects of Capillary and Van Der Waals Dispersion Forces on the Equilibrium Profile of a Wetting Liquid: Theory and Experiment, J. Chem. Phys., vol. 87, pp. 4180–4188, 1987.
  • X. Xu and P. Carey, Film Evaporation from a Micro-Grooved Surface—An Approximate Heat Transfer Model and Its Comparison with Experimental Data, J. Thermophys., vol. 4, pp. 512–520, 1990.
  • M. S. Hanchak, M. D. Vangsness, J. S. Ervin, and L. W. Byrd, Model and Experiments of the Transient Evolution of a Thin, Evaporating Liquid Film, Int. J. Heat Mass Transfer, vol. 92, pp. 757–765, 2016.
  • R. Bertossi, Z. Lataoui, V. Ayel, C. Romestant, and Y. Bertin, Modeling of Thin Liquid Film in Grooved Heat Pipes, Numer. Heat Transfer: Part A-Appl., vol. 55, pp. 1075–1095, 2009.
  • J. Jiang, Y. X. Tao, and L. Byrd, Evaporative Heat Transfer from Thin Liquid Film on a Heated Cylinder, Int. J. Heat Mass Transfer, vol. 43, pp. 85–99, 2000.
  • K. Park and K. Lee, Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro-Capillary Channel, Int. J. Heat Mass Transfer, vol. 46, pp. 4587–4594, 2003.
  • J. Thome, V. Dupont, and A. Jacobi, Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model, Int. J. Heat Mass Transfer, vol. 47, pp. 3375–3385, 2004.
  • R. Remsburg, Thermal Design of Electronic Equipment, 1st ed., CRC Press, Washington, D.C., 2001.
  • E. Cetegen, Force Fed Microchannel High Heat Flux Cooling Utilizing Microgrooved Surfaces, Ph.D. thesis, University of Maryland, College Park, Maryland, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.