Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 2
398
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Rayleigh–Benard convection in water-based alumina nanofluid: A numerical study

, &
Pages 202-214 | Received 21 Jun 2016, Accepted 12 Oct 2016, Published online: 05 Jan 2017

References

  • S. Diwakar, S. K. Das, and T. Sundararajan, Accurate Solutions of Rayleigh-Bénard Convection in Confined Two-layer Systems using the Spectral Domain Decomposition Method, Numer. Heat Trans., Part A: Appl., vol. 66, no. 11, pp. 1218–1242, 2014.
  • R. Anandalakshmi and T. Basak, Numerical Simulations for the Analysis of Entropy Generation during Natural Convection in Porous Rhombic Enclosures, Numer. Heat Trans., Part A: Appl., vol. 63, no. 4, pp. 257–284, 2013.
  • N. Putra, W. Roetzel, and S. K. Das, Natural Convection of Nano-fluids, Heat Mass Trans., vol. 39, no. 8, pp. 775–784, 2003.
  • D. Wen and Y. Ding, Formulation of Nanofluids for Natural Convective Heat Transfer Applications, Int. J. Heat Fluid Flow, vol. 26, no. 6, pp. 855–864, 2005.
  • C. H. Li and G. Peterson, Experimental Studies of Natural Convection Heat Transfer of Al2o3/di Water Nanoparticle Suspensions (nanofluids), Adv. Mech. Eng., vol. 2, pp. 742–739, 2010.
  • C. Ho, W. Liu, Y. Chang, and C. Lin, Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study, Int. J. Therm. Sci., vol. 49, no. 8, pp. 1345–1353, 2010.
  • K. Khanafer, K. Vafai, and M. Lightstone, Buoyancy-Driven Heat Transfer Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids, Int. J. Heat Mass Trans., vol. 46, no. 19, pp. 3639–3653, 2003.
  • R.-Y. Jou and S.-C. Tzeng, Numerical Research of Nature Convective Heat Transfer Enhancement Filled with Nanofluids in Rectangular Enclosures, Int. Commun. Heat Mass Transfer, vol. 33, no. 6, pp. 727–736, 2006.
  • F.-H. Lai and Y.-T. Yang, Lattice Boltzmann Simulation of Natural Convection Heat Transfer of Al2O3/Water Nanofluids in a Square Enclosure, Int. J. Therm. Sci., vol. 50, no. 10, pp. 1930–1941, 2011.
  • G. R. Kefayati, S. Hosseinizadeh, M. G orji, and H. Sajjadi, Lattice Boltzmann Simulation of Natural Convection in Tall Enclosures using Water/sio 2 Nanofluid, Int. Commun. Heat Mass Transfer, vol. 38, no. 6, pp. 798–805, 2011.
  • N. Ben-Cheikh, A. J. Chamkha, B. Ben-Beya, and T. Lili, Natural Convection of Water-based Nanofluids in a Square Enclosure with Non-Uniform Heating of the Bottom Wall, J. Mod. Phys., vol. 4, pp. 147–159, 2013.
  • J. Kim, Y. T. Kang, and C. K. Choi, Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids, Phys. Fluids (1994–present), vol. 16, no. 7, pp. 2395–2401, 2004.
  • K. S. Hwang, J.-H. Lee, and S. P. Jang, Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity, Int. J. Heat Mass Transfer, vol. 50, no. 19, pp. 4003–4010, 2007.
  • E. Abu-Nada, Rayleigh–Bénard Convection in Nanofluids: Effect of Temperature Dependent Properties, Int. J. Therm. Sci., vol. 50, no. 9, pp. 1720–1730, 2011.
  • B. Elhajjar, G. Bachir, A. Mojtabi, C. Fakih, and M. C. Charrier-Mojtabi, Modeling of Rayleigh–bénard Natural Convection Heat Transfer in Nanofluids, Comptes Rendus Mécanique, vol. 338, no. 6, pp. 350–354, 2010.
  • J. Buongiorno, Convective Transport in Nanofluids, J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006.
  • D. Tzou, Thermal Instability of Nanofluids in Natural Convection, Int. J. Heat Mass Transfer, vol. 51, no. 11, pp. 2967–2979, 2008.
  • W. Khan and I. Pop, Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet, Int. J. Heat Mass Transfer, vol. 53, no. 11, pp. 2477–2483, 2010.
  • H. A. Pakravan and M. Yaghoubi, Combined Thermophoresis, Brownian Motion and Dufour Effects on Natural Convection of Nanofluids, Int. J. Therm. Sci., vol. 50, no. 3, pp. 394–402, 2011.
  • Z. Haddad, E. Abu-Nada, H. F. Oztop, and A. Mataoui, Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhancement? Int. J. Therm. Sci., vol. 57, pp. 152–162, 2012.
  • Z. Haddad, H. F. Oztop, E. Abu-Nada, and A. Mataoui, A Review on Natural Convective Heat Transfer of Nanofluids, Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5363–5378, 2012.
  • S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Clarendon Press, Oxford, UK, 2001.
  • A. A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, Springer Science & Business Media, 2011.
  • C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. Choi, Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement, Appl. Phys. Lett., vol. 87, no. 15, pp. 3107, 2005.
  • Y. Wang, C. Shu, C. Teo, and L. Yang, A Fractional-Step Lattice Boltzmann Flux Solver for Axisymmetric Thermal Flows, Num. Heat Transfer, Part B: Fund., vol. 69, no. 2, pp. 111–129, 2016.
  • S. C. Mishra, A. Akhtar, and A. Garg, Numerical Analysis of Rayleigh–Bénard Convection with and Without Volumetric Radiation, Numer. Heat Transfer, Part A: Appl., vol. 65, no. 2, pp. 144–164, 2014.
  • A. Bejan, Convection Heat Transfer, John Wiley & Sons, NJ, USA, 2013.
  • V. Costa, Bejans Heatlines and Masslines for Convection Visualization and Analysis, Appl. Mech. Rev., vol. 59, no. 3, pp. 126–145, 2006.
  • T. Basak, S. Roy, and I. Pop, Heat Flow Analysis for Natural Convection within Trapezoidal Enclosures based on Heatline Concept, Int. J. Heat Mass Transfer, vol. 52, no. 11, pp. 2471–2483, 2009.
  • H. Rossby, A Study of Bénard Convection With and Without Rotation, J. Fluid Mech., vol. 36, no. 02, pp. 309–335, 1969.
  • X. Shan, Simulation of Rayleigh-Bénard Convection using a Lattice Boltzmann Method, Phys. Rev. E, vol. 55, no. 3, pp. 2780, 1997.
  • B. Chang, A. Mills, and E. Hernandez, Natural Convection of Microparticle Suspensions in Thin Enclosures, Int. J. Heat Mass Transfer, vol. 51, no. 5, pp. 1332–1341, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.