Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 2
245
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

A priori and a posteriori analyses of algebraic flame surface density modeling in the context of Large Eddy Simulation of turbulent premixed combustion

, , &
Pages 153-171 | Received 22 Jul 2016, Accepted 12 Oct 2016, Published online: 05 Jan 2017

References

  • E. M. Orbegosso, L. F. Figueira Da Silva, and R. Serfaty, Comparative Study of Thermal Radiation Properties Models in Turbulent Non-Premixed Sooting Combustion, Num. Heat Trans. A, vol. 69, no. 2, pp. 166–179, 2016.
  • W. Yang and J. Zhang, Simulation of Methane Partially Premixed Turbulent Swirling Jet Flame, Num. Heat Trans. A, in press, doi:10.1080/10407782.2015.1125701, 2016.
  • Y. Gao and N. Chakraborty, Modeling of Lewis Number Dependence of Scalar Dissipation Rate Transport for Large Eddy Simulations for Turbulent Premixed Combustion, Num. Heat Trans. A, vol. 69, no. 11, pp. 1201–1222, 2016.
  • P. A. Libby and K. N. C. Bray, Counter-gradient Diffusion in Premixed Turbulent Flames, AIAA J., vol. 19, pp. 205–213, 1981.
  • K. N. C. Bray, P. A. Libby, and J. B. Moss, Unified Modeling Approach for Premixed Turbulent Combustion-part I: General Formulation, Combust. Flame, vol. 61, pp. 87–102, 1985.
  • J. B. Moss, Simultaneous Measurements of Concentration and Velocity in an Open Premixed Turbulent Flame, Combust. Sci. Technol., vol. 22, pp. 119–129, 1980.
  • R. K. Cheng, Conditional Sampling of Turbulence Intensities and Reynolds Stress in Premixed Turbulent Flames, Combust. Sci. Technol., vol. 41, pp. 109–142, 1984.
  • N. W. H. Armstrong and K. N. C. Bray, Premixed Turbulent Combustion Flow Field Measurements Using PIV and LST and Their Application to Flamelet Modeling of Engine Combustion, SAE Pap., 92–2322, 1992.
  • Y. C. Chen and R. W. Bilger, Turbulence and Scalar Transport in Premixed Bunsen Flames of Lean Hydrogen/air mixtures, Proc. Combust. Inst., vol. 21, pp. 521–528, 2000.
  • S. Pfadler, A. Leipertz, F. Dinkelacker, J. Waesle, A. Winkler, and T. Sattelmayer, Two-dimensional Direct Measurement of the Turbulent Flux in Turbulent Premixed Swirl Flames, Proc. Combust. Inst., vol. 31, pp. 1337–1344, 2007.
  • S. Pfadler, A. Leipertz, and F. Dinkelacker, Systematic Experiments on Turbulent Premixed Bunsen Flames Including Turbulent Flux Measurements, Combust. Flame, vol. 152, pp. 616–631, 2008.
  • C. J. Rutland and R. S. Cant, Turbulent Transport in Premixed Flames, Pro. Summer Progr., Cent. Turbul. Res., NASA Ames/Stanford University, Stanford, CA, pp. 75–94, 1994.
  • D. Veynante, A. Trouvé, K. N. C. Bray, and T. Mantel, Gradient and Counter-Gradient Scalar Transport in Turbulent Premixed Flames, J. Fluid Mech., vol. 332, pp. 263–293, 1997.
  • N. Swaminathan, R. W. Bilger, and B. Cuenot, Relationship between Turbulent Scalar Flux and Conditional Dilatation in Premixed Flames with Complex Chemistry, Combust. Flame, vol. 126, pp. 1764–1779, 2001.
  • S. Nishiki, T. Hasegawa, R. Borghi, and R. Himeno, Modelling of Turbulent Scalar Flux in Turbulent Premixed Flames Based on DNS Database, Combust. Theor. Model., vol. 10, pp. 39–55, 2006.
  • N. Chakraborty and R. S. Cant, Physical Insight and Modelling for Lewis Number Effects on Turbulent Heat and Mass Transport in Turbulent Premixed Flames, Num. Heat Trans. A, vol. 55, pp. 762–779, 2009.
  • N. Chakraborty and R. S. Cant, Effects of Turbulent Reynolds Number on the Modelling of Turbulent Scalar Flux in Premixed Flames, Num. Heat Trans. A, vol. 67, no. 11, pp. 1187–1207, 2015.
  • S. Pfadler, F. Dinkelacker, F. Beyrau, and A. Leipertz, High Resolution Dual-plane Stereo-PIV for Validation of Subgrid Scale Models in Large Eddy Simulations of Turbulent Premixed Flames, Combust. Flame, vol. 156, pp. 1552–1564, 2009.
  • S. Pfadler, J. Kerl, F. Beyrau, A. Leipertz, A. Sadiki, J. Scheuerlein, and F. Dinkelacker, Direct Evaluation of the Subgrid Scale Scalar Flux in Turbulent Premixed Flames with Conditioned Dual-plane Stereo-PIV, Proc. Combust. Inst., vol. 32, pp. 1723–1730, 2009.
  • G. Lecocq, S. Richard, O. Colin, and L. Vervisch, Gradient and Counter-gradient Modeling in Premixed Flames: Theoretical Study and Application to the LES of a Lean Premixed Turbulent Swirl-burner, Combust. Sci. Technol., vol. 182, pp. 465–479, 2010.
  • Y. Gao, N. Chakraborty, and M. Klein, Assessment of the Performances of Sub-grid Scalar Flux Models for Premixed Flames with Different Global Lewis Numbers: A Direct Numerical Simulation Analysis, Int. J. Heat Fluid Flow, vol. 52, pp. 28–39, 2015.
  • Y. Gao, M. Klein, and N. Chakraborty, Assessment of Sub-grid Scalar Flux Modeling in Premixed Flames for Large Eddy Simulations: A-Priori Direct Numerical Simulation analysis, Eur. J. Mech. B/Fluids, vol. 52, pp. 97–108, 2015.
  • Y. Huai, A. Sadiki, S. Pfadler, M. Loffler, F. Beyrau, A. Leipertz, and F. Dinkelacker, Experimental Assessment of Scalar Flux Models for Large Eddy Simulations of Non-reacting Flows, Turbul. Heat Mass Transfer, vol. 5, pp. 263–266, 2006.
  • R. A. Clark, J. H. Ferziger, and W. C. Reynolds, Evaluation of Subgrid-scale Models using an Accurately Simulated Turbulent Flow, J. Fluid Mech., vol. 91, pp. 1–16, 1979.
  • K. Keppeler, E. Tangermann, U. Allauddin, and M. Pfitzner, LES of Low to High Turbulent Combustion in an Elevated Pressure Environment, Flow Turbul. Combust., vol. 92, pp. 767–802, 2014.
  • F. Gouldin, An Application of Fractals to Modeling to Premixed Flames, Combust. Flame, vol. 68, no. 3, pp. 249–266, 1987.
  • F. Gouldin, K. N. C. Bray, and J. Y. Chen, Chemical Closure Model for Fractal Flamelets, Combust. Flame, vol. 77, no. 3–4, pp. 241–259, 1989.
  • E. Giacomazzi, C. Bruno, and B. Favini, Fractal Modeling of Turbulent Combustion, Combust. Theor. Model., vol. 4, no. 4, pp. 391–412, 2000.
  • Ö. L. Gülder and G. J. Smallwood, Inner Cut-off Scale of Flame Surface Wrinkling in Turbulent Premixed Flames, Combust. Flame, vol. 103, no. 1–2, pp. 107–114, 1995.
  • H. Kobayashi and H. Kawazoe, Flame Instability Effects on the Smallest Wrinkling Scale and Burning Velocity of High-pressure Turbulent Premixed Flames, Proc. Combust. Inst., vol. 28, no. 1, pp. 375–382, 2000.
  • A. Lipatnikov and J. Chomiak, Molecular Transport Effects on Turbulence Flame Propagation and Structure, Prog. Energy Combust., vol. 31, no. 1, pp. 1–73, 2005.
  • N. Chakraborty and M. Klein, A-priori Direct Numerical Simulation Assessment of Algebraic Flame Surface Density Models for Turbulent Premixed Flames in the Context of Large Eddy Simulation, Phys. Fluids, vol. 20, no. 8, pp. 85–108, 2008.
  • P. Clavin, Dynamic Behavior of Premixed Flame Fronts in Laminar and Turbulent Flows, Prog. Energy Combust. Sci., vol. 11, no. 1, pp. 1–59, 1985.
  • E. R. Hawkes and R. S. Cant, Implications of Flame Surface Density Approach to Large Eddy Simulation of Premixed Turbulent Combustion, Combust. Flame, vol. 126, no. 3, pp. 1617–1629, 2001.
  • C. Meneveau and T. Poinsot, Stretching and Quenching of Flamelets in Premixed Turbulent Combustion, Combust. Flame, vol. 86, no. 4, pp. 311–332, 1991.
  • H. Kobayashi, T. Nakashima, T. Tamura, K. Maruta, and T. Niioka, Turbulence Measurements and Observations of Turbulent Premixed Flames at Elevated Pressures up to 3.0 MPa. Combust. Flame, vol. 108, no. 1–2, pp. 104–110, 1997.
  • H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, and F. A. Williams, Burning Velocity of Turbulent Premixed Flames in a High-pressure Environment, Proc. Combust. Inst., vol. 26, no. 1, pp. 389–396, 1996.
  • A. Kempf, M. Klein, and J. Janicka, Efficient Generation of Initial and Inflow Conditions for Transient Turbulent Flows in Arbitrary Geometries, Flow Turbul. Combust., vol. 74, no. 1, pp. 67–84, 2005.
  • E. Tangermann and M. Pfitzner, Evaluation of Combustion Models for Combustion-induced Vortex Break-down, J. Turbul., vol. 10, no. 7, 2009.
  • U. Schumann, Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli, J. Comput. Phys., vol. 18, no. 1, pp. 376–404, 1975.
  • C. Fureby, G. Tabor, H. G. Weller, and A. D. Gosman, A comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence, Phys. Fluids, vol. 9, no. 5, pp. 1416–1429, 1997.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2nd ed., Edwards, 2005.
  • S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
  • M. Klein, An Attempt to Assess the Quality of Large Eddy Simulations in the Context of Implicit Filtering, Flow Turbul. Combust., vol. 75, pp. 131–147, 2005.
  • I. B. Celik, Z. N. Cehreli, and I. Yavuz, Index of resolution quality for Large Eddy Simulations, J. Fluids Eng., vol. 127, no. 5, pp. 949–958, 2005.
  • R. Mercier, V. Moureau, D. Veynante, and B. Fiorina, LES of Turbulent Combustion: On the Consistency between Flame, and Flow Filter Scales, Proc. Combust. Inst., vol. 35, pp. 1359–1366, 2015.
  • F. Schwertfirm and M. Manhart, DNS of Passive Scalar Transport in Turbulent Channel Flow at High Schmidt Numbers, Int. J. Heat Fluid Flow, vol. 28, no. 6, pp. 1204–1214, 2007.
  • M. Boger and D. Veynante, Large Eddy Simulations of a Turbulent Premixed V-shaped Flame, in C. Dopazo (Ed.), Advances Turbulence, Cimne, Barcelona, pp. 449–452, 2000.
  • A. W. Vreman, Direct and Large Eddy Simulation of the Compressible Mixing Layer, Ph.D. thesis, University of Twente, Enschede, Netherlands, 1995.
  • B. Hakberg and A. D. Gosman, Analytical Determination of Turbulent Flame Speed from Combustion Models, Proc. Combust. Inst., vol. 20, pp. 225–232, 1984.
  • M. Klein, N. Chakraborty, and Y. Gao, Scale Similarity Based Models and Their Application to Subgrid Scale Scalar Flux Modelling in the Context of Turbulent Premixed Flames, Int. J. Heat Fluid Flow, vol. 57, pp. 91–108, 2016.
  • F. Fichot, F. Lacas, F. Veynante, and D. Candel, One-dimensional Propagation of a Premixed Turbulent Flame with a Balance Equation for Flame Surface Density, Combust. Sci. Technol., vol. 90, pp. 35–60, 1993.
  • E. R. Hawkes, Large Eddy Simulation of Premixed Turbulent Combustion, (Ph.D. Thesis), Cambridge Engineering University Department, Cambridge, 2000.
  • N. Chakraborty, G. Hartung, M. Katragadda, and C. F. Kaminski, A Numerical Comparison of 2D and 3D Density-weighted Displacement Speed Statistics and Implications for Laser Based Measurements of Flame Displacement Speed, Combust. Flame, vol. 158, pp. 1372–1390, 2011.
  • F. Charlette, C. Meneveau, and D. Veynante, A Power-law Flame Wrinkling Model for LES of Premixed Turbulent Combustion. Part I: Non-dynamic Formulation and Initial Tests. Combust. Flame, vol. 131, pp. 159–180, 2002.
  • R. W. Grout, An Age-extended Progress Variable for Conditioning Reaction Rates, Phys. Fluids, vol. 19, 105107, 2007.
  • H. Reddy and J. Abraham, Two-Dimensional Direct Numerical Simulation Evaluation of the Flame Surface Density Model for Flames Developing from an Ignition Kernel in Lean Methane/Air Mixtures Under Engine Conditions, Phys. Fluids, vol. 24, 105108, 2012.
  • C. Pera, S. Chevillard, and J. Reveillon, Effects of Residual Burnt Gas Heterogeneity on Early Flame Propagation and on Cyclic Variability in Spark-ignited Engines, Combust. Flame, vol. 160, pp. 1020–1032, 2013.
  • H. G. Weller, G. Tabor, A. D. Gosman, and C. Fureby, Application of Flame Wrinkling LES Combustion Model to a Turbulent Mixing Layer, Proc. Combust. Inst., vol. 27, pp. 899–907, 1998.
  • T. Ma, O. Stein, N. Chakraborty, and A. Kempf, A-posteriori Testing of Algebraic Flame Surface Density Models for LES, Combust. Theor. Model., vol. 17, pp. 431–482, 2013.
  • M. Klein, N. Chakraborty, and M. Pfitzner, Analysis of the Combined Modeling of Subgrid Transport and Filtered Flame Propagation for Premixed Turbulent Combustion, Flow Turbul. Combust., vol. 96, pp. 921–938, 2016.
  • C. Fureby and F. Grinstein, Large Eddy Simulation of High-Reynolds-number Free and Wall-bounded Flows, J. Comp. Phys., vol. 181, pp. 68–97, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.