Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 7
287
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

The effects of nanoparticle aggregation on the convection heat transfer investigated by a combined NDDM and DPM method

, , &
Pages 754-768 | Received 13 Dec 2016, Accepted 03 Mar 2017, Published online: 27 Apr 2017

References

  • M. P. Beck, Thermal Conductivity of Metal Oxide Nanofluids, Ph.D. thesis, Georgia Institute of Technology, GA, 2008.
  • L. Zhouhang, W. Yuxin, and G. Tang, Numerical Analysis of Buoyancy Effect and Heat Transfer Enhancement in Flow of Supercritical Water through Internally Ribbed Tubes, Appl. Therm. Eng., vol. 98, pp. 1080–1090, 2016.
  • G. W. Kim, H. M. Lim, and G. H. Rhee, Numerical Studies of Heat Transfer Enhancement by Cross-Cut Flow Control in Wavy Fin Heat Exchangers, Int. J. Heat Mass Transf., vol. 96, pp. 110–117, 2016.
  • M. T. Al-Asadi, F. S. Alkasmoul, and M. C. T. Wilson, Heat Transfer Enhancement in a Micro-Channel Cooling System Using Cylindrical Vortex Generators, Int. Commun. Heat Mass., vol. 74, pp. 40–47, 2016.
  • N. Zheng, P. Liu, F. Shan, Z. Liu, and W. Liu, Heat Transfer Enhancement in a Novel Internally Grooved Tube by Generating Longitudinal Swirl Flows with Multi-Vortexes, Appl. Therm. Eng., vol. 95, pp. 421–432, 2015.
  • S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME Publ.-Fed., vol. 231, pp. 99–106, 1995.
  • Y. Xuan and L. Qiang, Investigation on Convective Heat Transfer and Flow Features of Nanofluids, J. Heat Trans-T ASME, vol. 125, pp. 151–155, 2003.
  • W. H. Azmi, K. Abdul Hamid, and K. V. Rizalman Mamat, Sharma. Effects of Working Temperature on Thermo-Physical Properties and Forced Convection Heat Transfer of Tio2 Nanofluids in Water – Ethylene Glycol Mixture, Appl. Therm. Eng., vol. 106, pp. 1190–1199, 2016.
  • H. Zhang, S. Shao, X. Hongbo, and C. Tian, Heat Transfer and Flow Features of Al2O3–Water Nanofluids Flowing through a Circular Microchannel–Experimental Results and Correlations, Appl. Therm. Eng., vol. 61, pp. 86–92, 2013.
  • H. Sajjadi, M. Gorji, G. H. R. Kefayati, and D. D. Ganji, Lattice Boltzmann Simulation of Turbulent Natural Convection in Tall Enclosures Using Cu/Water Nanofluid, Numer. Heat Transfer, Part A Appl., vol. 62, pp. 512–530, 2012.
  • M. Rahimi-Esbo, A. A. Ranjbar, A. Ramiar, M. Rahgoshay, and A. Arya, Numerical Study of the Turbulent Forced Convection Jet Flow of Nanofluid in a Converging Duct, Numer. Heat Transfer, Part A Appl., vol. 62, pp. 60–79, 2012.
  • S. E. B. Maiga, C. T. Nguyen, N. Galanis, and G. Roy, Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlatt. Microstruct., vol. 35, pp. 543–557, 2004.
  • S. E. B. Maiga, T. N. Cong, N. Galanis, G. Roy, T. Mare, and M. Coqueux, Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticle Suspension, Int. J. Numer. Meth. Heat Fluid Flow., vol. 16, pp. 275–292, 2006.
  • A. Behzadmehr, M. Saffar-Avval, and N. Galanis, Prediction of Turbulent Forced Convection of a Nanofluid in a Tube with Uniform Heat Flux Using a Two Phase Approach, Int. J. Heat Fluid Flow., vol. 28, pp. 211–219, 2007.
  • P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties, Int. J. Therm. Sci., vol. 48, pp. 290–302, 2009.
  • M. Rostamani, S. F. Hosseinizadeh, M. Gorji, and J. M. Khodadadi, Numerical Study of Turbulent Forced Convection Flow of Nanofluids in a Long Horizontal Duct Considering Variable Properties, Int. Commun. Heat Mass Transf., vol. 37, pp. 1426–1431, 2010.
  • R. Lotfi, Y. Saboohi, and A. M. Rashidi, Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches, Int. Commun. Heat Mass Transf., vol. 37, pp. 74–78, 2010.
  • V. Bianco, O. Manca, and S. Nardini, Numerical Investigation on Nanofluids Turbulent Convection Heat Transfer Inside a Circular Tube, Int. J. Therm. Sci., vol. 50, pp. 341–349, 2011.
  • M. Akbari, N. Galanis, and A. Behzadmehr, Comparative Assessment of Single and Two-Phase Models for Numerical Studies of Nanofluid Turbulent Forced Convection, Int. J. Heat Fluid Flow., vol. 37, pp. 136–146, 2012.
  • N. Kumar and B. P. Puranik, Assessment of a Single Phase Model of a Nanofluid for Numerical Predication of Forced Convective Heat Transfer, J. Nanofluids., vol. 5, pp. 94–100, 2016.
  • Z. Yan Ghale, M. Haghshenasfard, and M. Nasr Esfahany, Investigation of Nanofluids Heat Transfer in a Ribbed Microchannel Heat Sink Using Single-Phase and Multiphase CFD Models, Int. Commun. Heat Mass Transf., vol. 68, pp. 122–129, 2015.
  • P. Ganesan, B. S. He, S. Sivasankaran, and S. C. Sandaran, Turbulent Forced Convection of Cu–Water Nanofluid in a Heated Tube: Improvement of the Two-Phase Model, Numer. Heat Transfer, Part A Appl., vol. 69, pp. 401–420, 2016.
  • N. Kumar and B. P. Puranik, Numerical Study of Convective Heat Transfer with Nanofluids in Turbulent Flow Using a Lagrangian-Eulerian Approach, Appl. Therm. Eng., vol. 111, pp. 1674–1681, 2016.
  • M. Mahdavi, M. Sharifpur, and J. P. Meyer, CFD Modelling of Heat Transfer and Pressure Drops for Nanofluids through Vertical Tubes in Laminar Flow by Lagrangian and Eulerian Approaches, Int. J. Heat Fluid Flow., vol. 88, pp. 803–813, 2015.
  • S. Sonawane, U. Bhandarkar, and B. Puranik, Modeling Forced Convection Nanofluid Heat Transfer Using an Eulerian-Lagrangian Approach, J. Therm. Sci. Eng. Appl., vol. 8, pp. 031001 8, 2016.
  • M. Hatami, D. Song, and D. Jing, Optimization of a Circular-Wavy Cavity Filled by Nanofluid under the Natural Convection Heat Transfer Condition, Int. J. Heat Mass Transf., vol. 98, pp. 758–767, 2016.
  • Y.-T. Yang, K.-T. Tsai, Y.-H. Wang, and S.-H. Lin, Numerical Study of Microchannel Heat Sink Performance Using Nanofluids, Int. Commun. Heat Mass., vol. 57, pp. 27–35, 2014.
  • H. Liu, Y. Yan, M. Jia, M. Xie, and C.-F. F. Lee, Three Dimensional Numerical Investigation on Wall Film Formation and Evaporation in Port Fuel Injection Engines, Numer. Heat Transfer, Part A Appl., vol. 69, pp. 1405–1422, 2016.
  • T. B. Gorji, A. A. Ranjbar, and S. N. Mirzababaei, Optical Properties of Carboxyl Functionalized Carbon Nanotube Aqueous Nanofluids as Direct Solar Thermal Energy Absorbers, Sol. Energy., vol. 119, pp. 332–342, 2015.
  • M. Karami, M. A. Akhavan Bahabadi, S. Delfani, and A. Ghozatloo, A New Application of Carbon Nanotubes Nanofluid as Working Fluid of Low-Temperature Direct Absorption Solar Collector, Sol. Energy. Mat. Sol. C., vol. 121, pp. 114–118, 2014.
  • G. Barthelmes, S. E. Pratsinis, and H. Buggisch, Particle Size Distributions and Viscosity of Suspensions Undergoing Shear-Induced Coagulation and Fragmentation, Chem. Eng. Sci., vol. 58, pp. 2893–2902, 2003.
  • P. T. Spicer and S. E. Pratsinis, Coagulation and Fragmentation: Universal Steady-State Particle-Size Distribution, AICHE J., vol. 42, pp. 1612–1620, 1996.
  • M. S. Abdel-Wahed, E. M. A. Elbashbeshy, and T. G. Emam, Flow and Heat Transfer over a Moving Surface with Non-Linear Velocity and Variable Thickness in a Nanofluids in the Presence of Brownian Motion, Appl. Math. Comput., vol. 254, pp. 49–62, 2015.
  • N. Anbuchezhian, K. Srinivasan, and K. Chandrasekaran, Thermophoresis and Brownian Motion Effects on Boundary Layer Flow of Nanofluid in Presence of Thermal Stratification due to Solar Energy, Appl Math Mech., vol. 33, pp. 765–780, 2012.
  • D. Song, D. Jing, J. Geng, and Y. Ren, A Modified Aggregation Based Model for the Accurate Prediction of Particle Distribution and Viscosity in Magnetic Nanofluids, Powder Technology., vol. 283, pp. 561–569, 2015.
  • Ansys-Fluent Documentation, Theory Guide and User Guide, Release, vol. 14, no. 5, pp. 403, 2011.
  • Y. He, Y. Men, Y. Zhao, H. Lu, and Y. Ding, Numerical Investigation into the Convective Heat Transfer of Tio2, Nanofluids Flowing through a Straight Tube under the Laminar Flow Conditions, Appl. Therm. Eng., vol. 29, pp. 1965–1972, 2009.
  • J. Koo and C. Kleinstreuer, Impact Analysis of Nanoparticle Motion Mechanisms on the Thermal Conductivity of Nanofluids, Int. Commun. Heat Mass Transfer., vol. 32, pp. 1111–1118, 2005.
  • Y. Xuan and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transfer., vol. 43, pp. 3701–3707, 2000.
  • K. B. Anoop, T. Sundararajan, and S. K. Das, Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region, Int. J. Heat Mass. Transfer., vol. 52, pp. 2189–2195, 2009.
  • M. K. Moraveji, M. Darabi, S. M. Hossein Haddad, and R. Davarnejad, Modeling of Convective Heat Transfer of a Nanofluid in the Developing Region of Tube Flow with Computational Fluid Dynamics, Int. Commun. Heat Mass Transfer., vol. 38, pp. 1291–1295, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.