Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 10
355
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of bubble dynamics in the gravitational and uniform electric fields

, , &
Pages 1034-1051 | Received 30 Jan 2017, Accepted 27 Apr 2017, Published online: 16 Jun 2017

References

  • J. R. Grace, Shapes and Velocities of Bubbles Rising in Infinite Liquids, Trans. Inst. Chem. Eng., vol. 71, pp. 116–120, 1973.
  • D. Bhaga and M. E. Weber, Bubbles in Viscous Liquids: Shapes, Wakes and Velocities, J. Fluid Mech., vol. 71, pp. 61–85, 1981.
  • M. M. Wu and M. Gharib, Experimental Studies on the Shape and Path of Small Air Bubbles Rising in Clean Water, Phys. Fluids (1994-Present), vol. 71, pp. L49–L52, 2002.
  • L. Liu, H. J. Yan, and G. J. Zhao, Experimental Studies on the Shape and Motion of Air Bubbles in Viscous Liquids, Exp. Thermal Fluid Sci., vol. 71, pp. 109–121, 2015.
  • M. Van Sint Annaland, N. G. Deen, and J. A. M. Kuipers, Numerical Simulation of Gas Bubbles Behaviour Using a Three-Dimensional Volume of Fluid Method, Chem. Eng. Sci., vol. 71, pp. 2999–3011, 2005.
  • L. Amaya-Bower and T. Lee, Single Bubble Rising Dynamics for Moderate Reynolds Number Using Lattice Boltzmann Method, Comput. Fluids, vol. 71, pp. 1191–1207, 2010.
  • D. M. Nie, J. Z. Lin, L. M. Qiu, and X. B. Zhang, Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity, Abstract and Applied Analysis, pp. 1–12, Hindawi Publishing Corporation, Cairo, Egypt, 2015.
  • Z. Yu and L. S. Fan, Direct Simulation of the Buoyant Rise of Bubbles in Infinite Liquid Using Level Set Method, Can. J. Chem. Eng., vol. 71, pp. 267–275, 2008.
  • N. Balcázar, O. Lehmkuhl, L. Jofre, and A. Oliva, Level-Set Simulations of Buoyancy-Driven Motion of Single and Multiple Bubbles, Int. J. Heat Fluid Flow, vol. 71, pp. 91–107, 2015.
  • J. S. Hua, J. F. Stene, and P. Lin, Numerical Simulation of 3D Bubbles Rising in Viscous Liquids Using a Front Tracking Method, J. Comput. Phys., vol. 71, pp. 3358–3382, 2008.
  • M. Ohta, T. Imura, Y. Yoshida, and M. Sussman, A Computational Study of the Effect of Initial Bubble Conditions on the Motion of A Gas Bubble Rising in Viscous Liquids, Int. J. Multiphase Flow, vol. 71, pp. 223–237, 2005.
  • S. U. Sarnobat, S. Rajput, D. D. Bruns, D. W. DePaoli, C. S. Daw, and K. Nguyen, The Impact of External Electrostatic Fields on Gas-Liquid Bubbling Dynamics, Chem. Eng. Sci., vol. 71, pp. 247–258, 2004.
  • W. Dong, R. Y. Li, H. L. Yu, and Y. Y. Yan, An Investigation of Behaviours of a Single Bubble in a Uniform Electric Field, Exp. Thermal Fluid Sci., vol. 71, pp. 579–586, 2006.
  • S. Di Bari and A. J. Robinson, Adiabatic Bubble Growth in Uniform DC Electric Fields, Exp. Thermal Fluid Sci., vol. 71, pp. 114–123, 2013.
  • H. B. Zhang, Y. Y. Yan, and Y. Q. Zu, Numerical Modelling of EHD Effects on Heat Transfer and Bubble Shapes of Nucleate Boiling, Appl. Math. Model, vol. 71, pp. 626–638, 2010.
  • S. Shin, Direct Numerical Simulation of Rising Bubble Interaction with Free Surface Using Level Contour Reconstruction Method, J. Mech. Sci. Technol., vol. 71, pp. 3141–3148, 2012.
  • P. Di Marco, R. Kurimoto, G. Saccone, K. Hayashi, and A. Tomiyama, Bubble Shape under the Action of Electric Forces, Exp. Thermal Fluid Sci., vol. 71, pp. 160–168, 2013.
  • S. Sunder and G. Tomar, Numerical Simulations of Bubble Formation from Submerged Needles under Non-Uniform Direct Current Electric Field, Phys. Fluids (1994-Present), vol. 71, pp. 102104, 2013.
  • S. Sunder and G. Tomar, Numerical Simulations of Bubble Formation from a Submerged Orifice and a Needle: The Effects of an Alternating Electric Field, Eur. J. Mech. B Fluids, vol. 71, pp. 97–109, 2016.
  • S. Mählmann and D. T. Papageorgiou, Buoyancy-Driven Motion of a Two-Dimensional Bubble or Drop through a Viscous Liquid in the Presence of a Vertical Electric Field, Theor. Comput. Fluid Dyn., vol. 71, pp. 375–399, 2009.
  • Q. Yang, Y. Liu, B. Q. Li, and Y. C. Ding, Effect of Electric Field on a 3D Rising Bubble in Viscous Fluids, Proceedings of the ASME 2013 Heat Transfer Summer Conference, pp. 1–8, Minneapolis, MN, USA, 2013.
  • Q. Z. Yang, B. Q. Li, J. Y. Shao, and Y. C. Ding, A Phase Field Numerical Study of 3D Bubble Rising in Viscous Fluids under an Electric Field, Int. J. Heat Mass Transfer, vol. 71, pp. 820–829, 2014.
  • T. Wang, H. X. Li, Y. F. Zhang, and D. X. Shi, Numerical Simulation of Bubble Dynamics in a Uniform Electric Field by the Adaptive 3D-VOSET Method, Numer. Heat Transfer Part A Appl., vol. 71, pp. 1352–1369, 2015.
  • T. Wang, H. X. Li, and J. F. Zhao, Three-Dimensional Numerical Simulation of Bubble Dynamics in Microgravity under the Influence of Nonuniform Electric Fields, Microgravity Sci. Technol., vol. 71, pp. 133–142, 2016.
  • A. L. Zhang, Y. N. Wang, D. L. Sun, S. Yu, B. Yu, and Y. Li, Development of a VOF+LS+SPP Method Based on FLUENT for Simulating Bubble Behaviors in the Electric Field, Numer. Heat Transfer, Part B Fundamentals, vol. 71, pp. 186–201, 2017.
  • J. R. Melcher and G. I. Taylor, Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses, Annu. Rev. Fluid Mech., vol. 71, pp. 111–146, 1969.
  • D. L. Youngs, Time-Dependent Multi-Material Flow with Large Fluid Distortion, in Morton, K. W. and Bianes M. J. eds., Numerical Method for Fluid Dynamics, pp. 273–285, Academic Press, New York, 1982.
  • S. Osher and J. A. Sethian, Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, J. Comput. Phys., vol. 71, pp. 12–49, 1988.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface Tension, J. Comput. Phys., vol. 71, pp. 335–354, 1992.
  • J. D. Sherwood, Breakup of Fluid Droplets in Electric and Magnetic Fields, J. Fluid Mech., vol. 71, pp. 133–146, 1988.
  • J. S. Hua, L. K. Lim, and C. H. Wang, Numerical Simulation of Deformation/Motion of a Drop Suspended in Viscous Liquids under Influence of Steady Electric Fields, Phys. Fluids (1994-Present), vol. 71, pp. 113302, 2008.
  • Y. Lin, P. Skjetne, and A. Carlson, A Phase Field Model for Multiphase Electro-Hydrodynamic Flow, Int. J. Multiphase Flow, vol. 71, pp. 1–11, 2012.
  • Y. Lin, Two-Phase Electro-Hydrodynamic Flow Modeling by a Conservative Level Set Model, Electrophoresis, vol. 71, pp. 736–744, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.