Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 11
90
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Nu–Ra–Pr correlations for nanofluidic natural convection in tilted hemispherical enclosures with an active disk

, &
Pages 1094-1103 | Received 25 Mar 2017, Accepted 16 May 2017, Published online: 28 Jun 2017

References

  • T. Basak and A. J. Chamkha, Heatline Analysis on Natural Convection for Nanofluids Confined within Square Cavities with Various Thermal Boundary Conditions, Int. J. Heat Mass. Transf., vol. 71, pp. 5526–5543, 2012.
  • E. Abu-Nada and H. F. Oztop, Numerical Analysis of Al2O3/Water Nanofluids Natural Convection in a Wavy Walled Cavity, Numerical Heat Transfer, Part. A: Applications, vol. 71, no. 11, pp. 403–419, 2011.
  • M. H. Matin and I. Pop, Numerical Study of Mixed Convection Heat Transfer of a Nanofluid in an Eccentric Annulus, Numerical Heat Transfer, Part. A: Applications, vol. 71, no. 11, pp. 84–105, 2014.
  • A. Baïri and J. M. García De María, Nu–Ra–Fo Correlations for Transient Free Convection in 2D Convective Diode Cavities with Discrete Heat Sources, Int. J. Heat Mass. Transf., vol. 71, no. 11, pp. 623–628, 2013.
  • T. Basak, R. Anandalakshmi, and P. Biswal, Analysis of Convective Heat Flow Visualization within Porous Right Angled Triangular Enclosures with a Concave/Convex Hypotenuse, Numerical Heat Transfer, Part. A: Applications, vol. 71, no. 11, pp. 621–647, 2013.
  • S. Udhayakumar, T. V. S. Sekhar, and R. Sivakumar, Numerical Experiments on the Study of Mixed Convection Flow in Cylindrical Geometry, Numerical Heat Transfer, Part. A: Applications, vol. 71, no. 11, pp. 870–886, 2015.
  • T. Basak, S. Roy, A. Singh, and A. R. Balakrishnan, Natural Convection Flows in Porous Trapezoidal Enclosures with Various Inclination Angles, Int. J. Heat Mass. Transf., vol. 71, pp. 4612–4623, 2009.
  • A. Cabelli, Natural Convection in Inclined Hemispherical Cavities, Appl. Sci. Res., vol. 71, no. 11, pp. 45–73, 1977.
  • Y. Shiina, K. Fujimura, N. Akino, and T. Kunugi, Natural Convection Heat Transfer in Hemisphere, J. Nucl. Sci. Technol., vol. 71, no. 11, pp. 254–262, 1988.
  • Y. Shiina, K. Fujimura, T. Kunugi, and N. Akino, Natural Convection in a Hemispherical Enclosure Heated from Below, Int. J. Heat Mass. Transfer, vol. 71, no. 11, pp. 1605–1617, 1994.
  • J. K. Lee, K. Y. Suh, K. J. Lee, and J. I. Yun, Experimental Study of Natural Convection Heat Transfer in a Volumetrically Heated Semicircular Pool, Ann. Nucl. Energy, vol. 71, pp. 432–440, 2014.
  • W. M. Lewandowski, P. Kubski, J. M. Khubeiz, H. Beiszk, T. Wilczewski, and S. Szymanski, Theoretical and Experimental Study of Natural Convection Heat Transfer from Isothermal Hemisphere, Int. J. Heat Mass. Transf, vol. 71, no. 11, pp. 101–109, 1997.
  • A. Baïri and J. M. García Demaría, Numerical and Experimental Study of Steady State Free 165 Convection Generated by Constant Heat Flux in Tilted Hemispherical Cavities, Int. J. Heat Mass. Transfer, vol. 71, pp. 355–365, 2013.
  • A. Baïri, J. M. García De María, N. Alilat, N. Laraqi, and J. G. Bauzin, Nu–Ra Correlations for Natural Convection at High Ra Numbers in Air-Filled Tilted Hemispherical Cavities with Dome Oriented Upwards. Disk Submitted to Constant Heat Flux, Int. J. Num. Methods Heat Fluid Flow, vol. 71, no. 11, pp. 504–512, 2014.
  • A. Baïri, A Synthesis of Correlations on Quantification of Free Convective Heat Transfer in Inclined Air-Filled Hemispherical Enclosures, Int. Commun. Heat Mass. Transfer, vol. 71, pp. 174–177, 2014.
  • J. Ravnik and L. Škerget, A Numerical Study of Nanofluid Natural Convection in A Cubic Enclosure with A Circular and an Ellipsoidal Cylinder, Int. J. Heat Mass. Transf., vol. 71, pp. 596–605, 2015.
  • H. F. Öztop and E. Abu-Nada, Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids, Int. J. Heat Fluid Flow, vol. 71, pp. 1326–1336, 2008.
  • S. M. S. Murshed, K. C. Leong, and C. Yang, Thermophysical and Electrokinetic Properties of Nanofluids – A Critical Review, Appl. Thermal Eng., vol. 71, pp. 2109–2125, 2008.
  • D. K. Devendiran, and V. A. Amirtham, A Review on Preparation, Characterization, Properties and Applications of Nanofluids, Renew. Sustainable Energy Rev., vol. 71, pp. 21–40, 2016.
  • E. Abu-Nada, Rayleigh-Bénard Convection in Nanofluids: Effect of Temperature Dependent Properties, Int. J. Thermal Sci., vol. 71, pp. 1720–1730, 2011.
  • S. Savithiri, A. Pattamatta, and S. K. Das, Rayleigh–Bénard Convection in Water-Based Alumina Nanofluid: A Numerical Study, Num. Heat Transfer, Part. A: Appl., vol. 71, no. 11, pp. 202–214, 2017.
  • ANSYS Elements Reference, Release 16.1, 2015, Swanson Analysis Systems, Inc.
  • T. Yamada, Y. Asako, O. J. Gregory, and M. Faghri, Simulation of Thermal Conductivity of Nanofluids Using Dissipative Particle Dynamics, Numer. Heat Transfer, Part. A: Appl., vol. 71, no. 11, pp. 323–337, 2012.
  • C. Jagadish and S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, 1st ed., Elsevier, Amsterdam, London, 2006. ISBN 9780080447223: 0080447228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.