Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 5
268
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Scaling analysis and numerical simulation of natural convection from a duct

, &
Pages 355-371 | Received 12 Jun 2017, Accepted 23 Aug 2017, Published online: 25 Sep 2017

References

  • B. R. Morton, “Forced plumes,” J. Fluid Mech., vol. 5, pp. 151–163, 1959. doi:10.1017/s002211205900012x
  • E. J. List, “Turbulent jets and plumes,” Annu. Rev. Fluid Mech., vol. 14, pp. 189–212, 1982. doi:10.1146/annurev.fl.14.010182.001201
  • J. A. Fay, “Buoyant plumes and wakes,” Annu. Rev. Fluid Mech., vol. 5, pp. 151–160, 1973. doi:10.1146/annurev.fl.05.010173.001055
  • B. Gebhart, “Instability, transition, and turbulence in buoyancy-induced flows,” Annu. Rev. Fluid Mech., vol. 5, pp. 213–246, 1973. doi:10.1146/annurev.fl.05.010173.001241
  • J. S. Turner, “Buoyant plumes and thermals,” Annu. Rev. Fluid Mech., vol. 1, pp. 29–44, 1969. doi:10.1146/annurev.fl.01.010169.000333
  • A. W. Woods, “Turbulent plumes in nature,” Annu. Rev. Fluid Mech., vol. 42, pp. 391–412, 2010. doi:10.1146/annurev-fluid-121108-145430
  • G. R. Hunt and T. S. van Den Bremerk, “Classical plume theory: 1937–2010 and beyond,” J. Appl. Math., vol. 76, pp. 424–448, 2011. doi:10.1093/imamat/hxq056
  • G. K. Batchelor, “Heat convection and buoyancy effects in fluids,” Q. J. R. Meteorol. Soc., vol. 80, pp. 339–358, 1954. doi:10.1002/qj.49708034504
  • B. R. Morton, G. I. Taylor, and J. S. Turner, “Turbulent gravitational convection from maintained and instantaneous sources,” Proc. R. Soc. A, vol. A234, pp. 1–23, 1956. doi:10.1098/rspa.1956.0011
  • J. S. Turner, “The ‘starting plumes’ in neutral surroundings,” J. Fluid Mech., vol. 13, 356–368, 1962. doi:10.1017/s0022112062000762
  • D. J. Shlien, “Transition of the axisymmetric starting plume cap,” Phys. Fluids, vol. 21, pp. 2154–2158, 1978. doi:10.1063/1.862171
  • M. A. Delichatsios, “Time similarity analysis of unsteady buoyant plumes in neutral surroundings,” J. Fluid Mech., vol. 93, pp. 241–250, 1979. doi:10.1017/s0022112079001877
  • C. A. H. Majumder, D. A. Yuen, and A. P. Vincent, “Four dynamical regimes for a starting plume model,” Phys. Fluids, vol. 16, pp. 1516–153, 2004. doi:10.1063/1.1683151
  • G. G. Rooney and P. F. Linden, “Similarity considerations for non-boussinesq plumes in an unstratified environment,” J. Fluid Mech., vol. 318, pp. 237–250, 1996. doi:10.1017/s0022112096007100
  • P. Carlotti and G. R. Hunt, “Analytical solutions for turbulent non-boussinesq plumes,” J. Fluid Mech., vol. 538, pp. 343–359, 2005. doi:10.1017/s0022112005005379
  • E. Moses, G. J. Zocchi, and A. Libchaber, “An experimental study of laminar plumes,” J. Fluid Mech., vol. 251, pp. 581–601, 1993. doi:10.1017/s0022112093003532
  • T. S. Pottebaum and M. Gharib, “The pinch-off process in a starting buoyant plume,” Exp. Fluids, vol. 37, pp. 87–94, 2004. doi:10.1007/s00348-004-0788-0
  • E. Kaminski and C. Jaupart, “Laminar starting plumes in high-Prandtl-number fluids,” J. Fluid Mech., vol. 478, pp. 287–298, 2003. doi:10.1017/s0022112002003233
  • E. M. Sparrow, R. B. Husar, and R. J. Goldstein, “Observations and other characteristics of thermals,” J. Fluid Mech., vol. 41, pp.793–800, 1970. doi:10.1017/s0022112070000927
  • F. Plourde, M. V. Pham, S. D. Kimi, and S. Balachandar, “Direct numerical simulations of a rapidly expanding thermal plume: Structure and entrainment interaction,” J. Fluid Mech., vol. 604, pp. 99–123, 2008. doi:10.1017/s0022112008001006
  • X. Jiang and K. H. Luo, “Direct numerical simulation of the puffing phenomenon of an axisymmetric thermal plume,” Theor. Comput. Fluid Dyn., vol. 14, pp. 55–74, 2000. doi:10.1007/s001620050125
  • T. Hattori, S. E. Norris, M. P. Kirkpatrick, and S. W. Armfield, “Transitional ventilated filling box flow with a line heat source,” Int. J. Heat Mass Transfer, vol. 55, pp. 3650–3665, 2012. doi:10.1016/j.ijheatmasstransfer.2012.03.011
  • T. Hattori, S. E. Norris, M. P. Kirkpatrick, and S. W. Armfield, “Simulation and analysis of puffing instability in the near field of pure thermal planar plumes,” Int. J. Therm. Sci., vol. 69, pp. 1–13, 2013. doi:10.1016/j.ijthermalsci.2013.01.016
  • T. Hattori, S. E. Norris, M. P. Kirkpatrick, and S. W. Armfield, “Experimental and numerical investigation of unsteady behaviour in the near-field of pure thermal planar plumes,” Exp. Therm. Fluid Sci., vol. 46, pp.139–150, 2013. doi:10.1016/j.expthermflusci.2012.12.005
  • S. Savithiri, P. Dhar, A. Pattamatta, and S. K. Da, “Particle–fluid interactivity reduces buoyancy-driven thermal transport in nanosuspensions: A multi-component lattice Boltzmann approach,” Numer. Heat Transfer A, vol. 70, pp. 260–281, 2016. doi:10.1080/10407782.2016.1173458
  • F. Moukalled, M. Darwish, J. Kasamani, A. Hammoud, and M. K. Mansour, “Buoyancy-induced flow and heat transfer in a porous annulus between concentric horizontal circular and square cylinders,” Numer. Heat Transfer A, vol. 69, pp. 1029–1050, 2016. doi:10.1080/10407782.2015.1090847
  • A. Sharma, P. S. Mahaputra, N. K. Manna, K. Ghosh, P. Wahi, and A. Mukhopadhyay, “Thermal instability-driven multiple solutions in a grooved channel,” Numer. Heat Transfer A, vol. 70, pp. 776–790, 2016. doi:10.1080/10407782.2016.1192936
  • Y. Lei, Y. Zhang, F. Wang, and X. Wang, “Enhancement of natural ventilation of a novel roof solar chimney with perforated absorber plate for building energy conservation,” Appl. Therm. Eng., vol. 107, pp. 653–661, 2016. doi:10.1016/j.applthermaleng.2016.06.090
  • P. Guo, Y. Wang, Q. Meng, and J. Li, “Experimental study on an indoor scale solar chimney setup in an artificial environment simulation laboratory,” Appl. Therm. Eng., vol. 107, pp. 818–826, 2016. doi:10.1016/j.applthermaleng.2016.07.025
  • G. E. Lau, G. H. Yeoh, V. Timchenko, and J. A. Reizes, “Numerical investigation of passive cooling in open vertical channels,” Appl. Therm. Eng., vol. 39, pp. 121–131, 2012. doi:10.1016/j.applthermaleng.2012.01.001
  • T. Taengchum, S. Chirarattananon, R. H. B. Exell, K. Kubaha, and P. Chaiwiwatworakul, “A study on a ventilation stack integrated with a light pipe,” Appl. Therm. Eng., vol. 50, pp. 546–554, 2013. doi:10.1016/j.applthermaleng.2012.04.045
  • M. Rahimi and M. M. Bayat, “An experimental study of naturally driven heated air flow in a vertical pipe,” Energy Build., vol. 43, pp. 126–129, 2011. doi:10.1016/j.enbuild.2010.08.032
  • G. Gan and S. B. Riffat, “A numerical study of solar chimney for natural ventilation of buildings with heat recovery,” Appl. Therm. Eng., vol. 18, pp. 1171–1187, 1998. doi:10.1016/s1359-4311(97)00117-8
  • B. Zamora and A. S. Kaiser, “Optimum wall-to-wall spacing in solar chimney shaped channels in natural convection by numerical investigation,” Appl. Therm. Eng., vol. 29, pp. 762–769, 2009. doi:10.1016/j.applthermaleng.2008.04.010
  • A. Somaye, F. Maryam, F. Rima, and M. Akram, “The effect of solar chimney layout on ventilation rate in buildings,” Energy Build., vol. 123, pp. 71–78, 2016. doi:10.1016/j.enbuild.2016.04.047
  • C. Chu, M. M. Rahman, and S. Kumaresan, “Improved thermal energy discharge rate from a temperature-controlled heating source in a natural draft chimney,” Appl. Therm. Eng., vol. 98, pp. 991–1002, 2016. doi:10.1016/j.applthermaleng.2015.12.098
  • L. Pera and B. Gebhart, “On the stability of laminar plumes: Some numerical solutions and experiments,” Int. J. Heat Mass Transfer, vol. 14, pp. 975–984, 1971. doi:10.1016/0017-9310(71)90123-2
  • J. C. Patterson and J. Imberger, “Unsteady natural convection in a rectangular cavity,” J. Fluid Mech., vol. 100, pp. 66–86, 1980. doi:10.1017/s0022112080001012
  • R. P. Satti and A. K. Agrawal, “Flow structure in the near field of buoyant low density gas jets,” Int. J. Heat Fluid Flow, vol. 27, pp. 336–347, 2006. doi:10.1016/j.ijheatfluidflow.2005.10.012
  • F. Xu and J. C. Patterson, “Temperature oscillations in a differentially heated cavity with and without a fin on the sidewall,” Int. Commun. Heat Mass, vol. 37, pp. 350–359, 2010. doi:10.1016/j.icheatmasstransfer.2010.01.004
  • N. M. Saïd, H. Mhiri, G. L. Palec, and P. Bournot, “Experimental and numerical analysis of pollutant dispersion from a chimney,” Atmos. Environ., vol. 39, pp. 1727–1738, 2005. doi:10.1016/j.atmosenv.2004.11.040
  • T. Hattori, S. E. Norris, M. P. Kirkpatrick, and S. W. Armfield, “Prandtl number dependence and instability mechanism of the near-field flow in a planar thermal plume,” J. Fluid Mech., vol. 732, pp. 105–127, 2013. doi:10.1017/jfm.2013.392
  • W. F. M. Yusoff, E. Salleh, N. M. Adam, A. R. Sapian, and M. Y. Sulaiman, “Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack,” Build. Environ., vol. 45, pp. 2296–2308, 2010. doi:10.1016/j.buildenv.2010.04.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.