Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 5
176
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A generalized multifluid optimal pressure for heat exchangers operating with supercritical fluid

&
Pages 345-354 | Received 22 May 2017, Accepted 23 Aug 2017, Published online: 25 Sep 2017

References

  • B. Widom, “The critical point and scaling theory,” Physica, vol. 73, pp. 107–118, 1974. doi:10.1016/0031-8914(74)90228-6
  • J. V. Sengers and J. M. H. L. Sengers, “Thermodynamic behavior of fluids near the critical point,” Annu. Rev. Phys. Chem., vol. 37, pp. 189–222, 1986. doi:10.1146/annurev.physchem.37.1.189
  • H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, New York, NY, USA: Oxford University Press, 1987.
  • H. E. Stanley, Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena, in More Things in Heaven and Earth: A Celebration of Physics at the Millennium, B. Bederson, Ed. New York: Springer, 1999, pp. 601–616.
  • G. Ruppeiner, A. Sahay, T. Sarkar, and G. Sengupta, “Thermodynamic geometry, phase transitions, and the widom line,” Phys. Rev. E, vol. 86, p. 052103, 2012. doi:10.1103/physreve.86.052103
  • P. F. McMillan and H. E. Stanley, “Fluid phases: going supercritical,” Nat. Phys., vol. 6, pp. 479–480, 2010. doi:10.1038/nphys1711
  • G. G. Simeoni et al., “The widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids,” Nat. Phys., vol. 6, pp. 503–507, 2010. doi:10.1038/nphys1683
  • W. B. Hall, Heat Transfer Near the Critical Point, in Advances in Heat Transfer, F. I. Thomas and P. H. James, Ed(s). Amsterdam, The Netherlands: Elsevier, 1971, pp. 1–86.
  • S. S. Pitla, D. M. Robinson, E. A. Groll, and S. Ramadhyani, “Heat transfer from supercritical carbon dioxide in tube flow: A critical review,” HVACR Res., vol. 4, pp. 281–301, 1998. doi:10.1080/10789669.1998.10391405
  • V. Dostal, M. J. Driscoll, and P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, MIT - ANP - TR-100, 2004.
  • X. Cheng, B. Kuang, and Y. H. Yang, Numerical analysis of heat transfer in supercritical water cooled flow channels,” Nucl. Eng. Des., vol. 237, pp. 240–252, 2007. doi:10.1016/j.nucengdes.2006.06.011
  • J. Y. Yoo, “The turbulent flows of supercritical fluids with heat transfer,” Annu. Rev. Fluid Mech., vol. 45, pp. 495–525, 2013. doi:10.1146/annurev-fluid-120710-101234
  • T. Zhang and D. Che, “Numerical investigation on heat transfer of supercritical water in a roughened tube,” Numer. Heat Transfer A, vol. 69, pp. 558–573, 2016. doi:10.1080/10407782.2015.1081032
  • W. Wei, M. Xie, and M. Jia, “Large eddy simulation of fluid injection under transcritical and supercritical conditions,” Numer. Heat Transfer A, vol. 70, pp. 870–886, 2016. doi:10.1080/10407782.2016.1214485
  • G. M. Hobold and A. K. da Silva, “Thermal behavior of supercritical fluids near the critical point,” Numer. Heat Transfer A, vol. 69, pp. 545–557, 2016. doi:10.1080/10407782.2015.1080584
  • Z. Zhao, D. Che, “Numerical investigation of conjugate heat transfer to supercritical co2 in a vertical tube-in-tube heat exchanger,” Numer. Heat Transfer A, vol. 67, pp. 857–882, 2015. doi:10.1080/10407782.2014.949211
  • X. Y. Xu, Q. W. Wang, L. Li, S. V. Ekkad, and T. Ma, “Thermal-hydraulic performance of different discontinuous fins used in a printed circuit heat exchanger for supercritical CO2,” Numer. Heat Transfer A, vol. 68, pp. 1067–1086, 2015. doi:10.1080/10407782.2015.1032028
  • R. B. Lakeh, A. S. Lavine, H. P. Kavehpour, G. B. Ganapathi, and R. E. Wirz, “Effect of laminar and turbulent buoyancy-driven flows on thermal energy storage using supercritical fluids,” Numer. Heat Transfer, Part A, vol. 64, pp. 955–973, 2013. doi:10.1080/10407782.2013.811349
  • R. B. Lakeh, A. S. Lavine, H. P. Kavehpour, and R. E. Wirz, “Study of turbulent natural convection in vertical storage tubes for supercritical thermal energy storage,” Numer. Heat Transfer A, vol. 67, pp. 119–139, 2015. doi:10.1080/10407782.2014.923224
  • J. Luo, L. Xu, E. Lascaris, H. E. Stanley, and S. V. Buldyrev, “Behavior of the widom line in critical phenomena,” Phys. Rev. Lett., vol. 112, pp. 135701, 2014. doi:10.1103/physrevlett.112.135701
  • S. H. Lee and J. R. Howell, “Turbulent developing convective heat transfer in a tube for fluids near the critical point,” Int. J. Heat Mass Transfer, vol. 41, pp. 1205–1218, 1998. doi:10.1016/s0017-9310(97)00217-2
  • I. Pioro, Application of Supercritical Pressure in Power Engineering: Specifics of Thermophysical Properties and Forced-Convective Heat Transfer, in Supercritical Fluid Technology for Energy and Environmental Applications, V. Anikeev and M. Fan Ed(s). Amsterdam, The Netherlands: Elsevier, 2013.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th ed., New York: John Wiley & Sons, Inc., 2011.
  • A. Bejan, Convection Heat Transfer, 3rd ed., New York: John Wiley & Sons, 2004.
  • R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed., New York: Dover Publications, Inc., 1986.
  • P. Bogacki and L. F. Shampine, “A 3(2) pair of runge–kutta formulas,” Appl. Math. Lett., vol. 2, pp. 321–325, 1989. doi:10.1016/0893-9659(89)90079-7
  • L. F. Shampine and M. W. Reichelt, “The MATLAB ODE suite,” SIAM J. Sci. Comput., vol. 18, pp. 1–22, 1997. doi:10.1137/s1064827594276424
  • J. Arora, Introduction to Optimum Design, Waltham, MA: Academic Press, 2012.
  • Matlab Optimization Toolbox, v. Release 2015a, Natick, MA: The MathWorks Inc., 2015.
  • I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library cool prop,” Indus. Eng. Chem. Res., vol. 53, pp. 2498–2508, 2014. doi:10.1021/ie4033999
  • CoolProp. Available: http://coolprop.org, Accessed: May 27, 2017.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, New York, NY, USA: CRC Press, 1980.
  • Y. J. Baik, M. Kim, K. C. Chang, and S. J. Kim, “Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source,” Appl. Energy, vol. 88, pp. 892–898, 2011. doi:10.1016/j.apenergy.2010.08.029
  • B. D. Iverson, T. M. Conboy, J. J. Pasch, and A. M. Kruizenga, “Supercritical CO2 brayton cycles for solar-thermal energy,” Appl. Energy, vol. 111, pp. 957–970, 2013. doi:10.1016/j.apenergy.2013.06.020
  • F. G. Battisti, J. M. Cardemil, F. M. Miller, and A. K. da Silva, “Normalized performance optimization of supercritical, CO2-based power cycles,” Energy, vol. 82, pp. 108–118, 2015. doi:10.1016/j.energy.2015.01.005
  • R. Span and W. Wagner, “A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa,” J. Phys. Chem. Ref. Data, vol. 25, pp. 1509–1596, 1996. doi:10.1063/1.555991
  • R. K. Shah and D. P. Sekulic, Fundamentals of Heat Exchanger Design, New York: John Wiley & Sons, Inc., 2003.
  • M. L. Huber, E. W. Lemmon, A. Kazakov, L. S. Ott, and T. J. Bruno, “Model for the thermodynamic properties of a biodiesel fuel,” Energy Fuels, vol. 23, pp. 3790–3797, 2009. doi:10.1021/ef900159g
  • P. Colonna, N. R. Nannan, A. Guardone, and E. W. Lemmon, “Multiparameter equations of state for selected siloxanes,” Fluid Phase Equilib., vol. 244, pp. 193–211, 2006. doi:10.1016/j.fluid.2006.04.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.