Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 5
417
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of heat transfer enhancement in a multitube thermal energy storage heat exchanger using fins

ORCID Icon &
Pages 389-400 | Received 05 May 2017, Accepted 23 Aug 2017, Published online: 25 Sep 2017

References

  • R. Pokhrel, J. E. González, T. Hight, and T. Adalsteinsson, “Analysis and design of a paraffin/graphite composite PCM integrated in a thermal storage unit,” J. Sol. Energy Eng., vol. 132, no. 4, p. 41006, 2010. doi:10.1115/1.4001473
  • A. Erek, Z. Ilken, and M. A. Acar, “Experimental and numerical investigation of thermal energy storage with a finned tube,” Int. J. Energy Res., vol. 29, no. 4, pp. 283–301, 2005. doi:10.1002/er.1057
  • U. Stritih, “An experimental study of enhanced heat transfer in rectangular PCM thermal storage,” Int. J. Heat Mass Transfer, vol. 47, no. 12–13, pp. 2841–2847, 2004. doi:10.1016/j.ijheatmasstransfer.2004.02.001
  • L. F. Cabeza, H. Mehling, S. Hiebler, and F. Ziegler, “Heat transfer enhancement in water when used as PCM in thermal energy storage,” Appl. Therm. Eng., vol. 22, no. 10, pp. 1141–1151, 2002. doi:10.1016/s1359-4311(02)00035-2
  • N. S. Dhaidan, “Nanostructures assisted melting of phase change materials in various cavities,” Appl. Therm. Eng., vol. 111, pp. 193–212, 2017. doi:10.1016/j.applthermaleng.2016.09.093
  • Y. Hamada, W. Ohtsu, and J. Fukai, “Thermal response in thermal energy storage material around heat transfer tubes: Effect of additives on heat transfer rates,” Sol. Energy, vol. 75, no. 4, pp. 317–328, 2003. doi:10.1016/j.solener.2003.07.028
  • J. P. Trelles and J. J. Dufly, “Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling,” Appl. Therm. Eng., vol. 23, no. 13, pp. 1647–1664, 2003. doi:10.1016/s1359-4311(03)00108-x
  • F. Agyenim, M. Rhodes, and I. Knight, The Use of Phase Change Material (PCM) to Improve the Coefficient of Performance of a Chiller for Meeting Domestic Cooling in Wales, 2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 21 Century, Crete Island, pp. 1–5, 2007.
  • F. Agyenim, P. Eames, and M. Smyth, “Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array,” Renew. Energy, vol. 35, no. 1, pp. 198–207, 2010. doi:10.1016/j.renene.2009.03.010
  • R. Hendra, Hamdani, T. Mahlia, and H. Kasjuki, “Thermal and melting heat transfer characteristics in a latent heat storage system using mikro,” Appl. Therm. Eng., vol. 25, no. 10, pp. 1503–1515, 2005. doi:10.1016/j.applthermaleng.2004.09.009
  • R. Velraj, R. V. Seeniraja, B. Hafnerb, C. Faberb, and K. Schwarzerb, “Heat transfer enhancement in a latent heat storage system,” Sol. Energy, vol. 65, no. 3, pp. 171–180, 1999. doi:10.1080/19430892.2012.738966
  • T. K. Aldoss and M. M. Rahman, “Comparison between the Single-PCM and Multi-PCM thermal energy storage design,” Energy Convers. Manag., vol. 83, pp. 79–87, 2014. doi:10.1016/j.enconman.2014.03.047
  • A. Mosaffa, F. Talati, M. A. Rosen, and T. H. Basirat, “Phase change material solidification in a finned cylindrical shell thermal energy storage: An approximate analytical approach,” Therm. Sci., vol. 17, no. 2, pp. 407–418, 2013. doi:10.2298/tsci120326207m
  • J. Wang, G. Chen, and H. Jiang, “Theoretical study on a novel phase change process,” Int. J. Energy Res., vol. 23, no. 4, pp. 287–294, 1999. doi:10.1002/(sici)1099-114x(19990325)23:4<287::aid-er476>3.3.co;2-b
  • J. Wang, Y. Ouyang, and G. Chen, “Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials,” Int. J. Energy Res., vol. 25, no. 5, pp. 439–447, 2001. doi:10.1002/er.695.abs
  • P. W. Griffiths, and P. C. Eames, “Performance of chilled ceiling panels using phase change material slurries as the heat transport medium,” Appl. Therm. Eng., vol. 27, no. 10, pp. 1756–1760, 2007. doi:10.1016/j.applthermaleng.2006.07.009
  • M. N. A. Hawlader, M. S. Uddin, and M. M. Khin, “Microencapsulated PCM thermal-energy storage system,” Appl. Energy, vol. 74, no. 1, pp. 195–202, 2003. doi:10.1016/s0306-2619(02)00146-0
  • T. E. Alam, J. S. Dhau, D. Y. Goswami, and E. Stefanakos, “Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems,” Appl. Energy, vol. 154, pp. 92–101, 2015. doi:10.1016/j.apenergy.2015.04.086
  • M. N. A. Hawlader, M. S. Uddin, and H. J. Zhu, “Encapsulated phase change materials for thermal energy storage: Experiments and simulation,” Int. J. Energy Res., vol. 26, no. 2, pp. 159–171, 2002. doi:10.1002/er.773
  • H. Mehling, L. F. Cabeza, S. Hippeli, and S. Hiebler, “PCM-module to improve hot water heat stores with stratification,” Renew. Energy, vol. 28, no. 5, pp. 699–711, 2003. doi:10.1016/s0960-1481(02)00108-8
  • R. B. Lakeh, A. S. Lavine, H. P. Kavehpour, G. B. Ganapathi, and R. E. Wirz, “Effect of laminar and turbulent buoyancy-driven flows on thermal energy storage using supercritical fluids,” Numer. Heat Transfer A, vol. 64, pp. 955–973, 2013. doi:10.1080/10407782.2013.811349
  • R. B. Lakeh, A. S. Lavine, H. P. Kavehpour, and R. E. Wirz, “Study of turbulent natural convection in vertical storage tubes for supercritical thermal energy storage,” Numer. Heat Transfer A, vol. 67, pp. 119–139, 2014. doi:10.1080/10407782.2014.923224
  • Z. Khan, Z. Khan, and K. Tabeshf, “Parametric investigations to enhance thermal performance of paraffin through a novel geometrical configuration of shell and tube latent thermal storage system,” Energy Convers. Manag., vol. 127, pp. 355–365, 2016. doi:10.1016/j.enconman.2016.09.030
  • M. K. Rathod, and J. Banerjee, “Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins,” Appl. Therm. Eng., vol. 75, pp. 1084–1092, 2015. doi:10.1016/j.applthermaleng.2014.10.074
  • R. Akhilesh, A. Narasimhan, and C. Balaji, “Method to improve geometry for heat transfer enhancement in PCM composite heat sinks,” Int. J. Heat Mass Transfer, vol. 48, no. 13, pp. 2759–2770, 2005. doi:10.1016/j.ijheatmasstransfer.2005.01.032
  • M. Gharebaghi and I. Sezai, “Enhancement of heat transfer in latent heat storage modules with internal fins,” Numer. Heat Transfer A, vol. 53, no. 7, pp. 749–765, 2007. doi:10.1080/10407780701715786
  • V. Shatikian, G. Ziskind, and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins,” Int. J. Heat Mass Transfer, vol. 48, no. 17, pp. 3689–3706, 2005. doi:10.1016/j.ijheatmasstransfer.2007.11.036
  • F. Agyenim, P. Eames, and M. Smyth, “A comparison of heat transfer enhancement in medium temperature thermal energy storage heat exchanger using fins and multitubes,” Sol. Energy, vol. 83, no. 9, pp. 1509–1520, 2009. doi:10.1007/978-3-540-75997-3_550
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, and A. Th. Mohammad, “Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers,” Appl. Therm. Eng. vol. 53, no. 1, pp. 147–156, 2013. doi:10.1016/j.applthermaleng.2013.01.011
  • O. García-Valladares, “Numerical simulation of triple concentric-tube heat exchangers,” Int. J. Therm. Sci., vol. 43, no. 10, pp. 979–991, 2004. doi:10.1016/j.ijthermalsci.2004.02.006
  • S. Mat, A. A. Al-Abidi, K. Sopian, M. Y. Sulaiman, and A. Th. Mohammad, “Enhance heat transfer for pcm melting in triplex tube with internal–external fins,” Energy Convers. Manag., vol. 74, pp. 223–236, 2013. doi:10.1016/j.enconman.2013.05.003
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, and A. Th. Mohammad, “Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins,” Energy Build., vol. 68, pp. 33–41, 2014. doi:10.1016/j.enbuild.2013.09.007
  • H. Eslamnezhad and A. B. Rahimi, “Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins,” Appl. Therm. Eng., vol. 113, pp. 813–821, 2017. doi:10.1016/j.applthermaleng.2016.11.067
  • M. Esapour, M. J. Hosseni, A. A. Ranjbar, Y. Pahamli, and R. Bahrampoury, “Phase change in multi-tube heat exchangers,” Renew. Energy, vol. 85, pp. 1017–1025, 2016. doi:10.1016/j.renene.2015.07.063
  • ANSYS, ANSYS fluent theory guide, ANSYS 16.2 Doc. 15317, 80, 2015.
  • A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection–diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transfer, vol. 13, no. 3, pp. 297–318, 1988. doi:10.1080/10407798808551388
  • W. B. Ye, D. S. Zhu, and N. Wang, “Numerical simulation on phase-change thermal storage/release in a plate-fin unit,” Appl. Therm. Eng. vol. 31, no. 17, pp. 3871–3884, 2011. doi:10.1016/j.applthermaleng.2011.07.035
  • A. C. Kheirabadi and D. Groulx, The Effect of the Mushy-Zone Constant on Simulated Phase Change Heat Transfer, Proc. CHT-15 ICHMT Int. Symp. Adv. Comput. Heat Transf., New Brunswick, NJ, USA, pp. 1–22, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.