Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 11
247
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Momentum and heat transfer characteristics of a thin circular disk in Bingham plastic fluids

, &
Pages 844-868 | Received 07 Sep 2017, Accepted 14 Nov 2017, Published online: 21 Dec 2017

References

  • R. P. Chhabra, J. Comiti, and I. Machac, “Flow of non-Newtonian fluids in fixed and fluidised beds: A review,” Chem. Eng. Sci., vol. 56, pp. 1–27, 2001. DOI: 10.1016/s0009-2509(00)00207-4.
  • R. P. Chhabra, “Fluid mechanics and heat transfer with non-Newtonian liquids in mechanically agitated vessels,” Adv. Heat Transfer, vol. 37, pp. 77–178, 2003. DOI: 10.1016/s0065-2717(03)37002-9.
  • R. P. Chhabra, Bubbles, Drops and Particles in Non-Newtonian Fluids, 2nd ed. Boca Raton: CRC Press, 2006.
  • E. L. Paul, V. A. Atiemo-Obeng, and S. M. Kresta, Handbook of Industrial Mixing: Science and Practice. Hoboken, NJ: Wiley, 2004.
  • J. M. Coulson and J. F. Richardson, Chemical Engineering, 2, 5th ed. Oxford: Butterworth-Heinemann, 2002.
  • K. C Wilson, G. R. Addie, A. Sellgren, and R. Clift, Slurry Transport using Centrifugal Pumps, 3rd ed. New York: Elsevier, 2006.
  • P. A. Shamlou, Processing of Solid–Liquid Suspensions. Oxford: Butterworth-Heinemann, 1993.
  • H. Li and V. Kottke, “Analysis of local shell side heat and mass transfer in the shell-and-tube heat exchanger with disc-and-doughnut baffles,” Int. J. Heat Mass Transfer, vol. 42, pp. 3509–3521, 1999. DOI: 10.1016/s0017-9310(98)00368-8.
  • A. Overbeck, “Uber die stationare flussigkeitsbewegungen mit berbucksichtigung der inneren Reibung,” Crelles J., vol. 81, pp. 62–80, 1876.
  • J. F. Trahan, R. F., Folse, and R. G. Hussey, “Combined side wall and bottom wall effects on the Stokes velocity of a disk moving broadside,” Phys. Fluids A., vol. 1, pp. 1625–1631, 1989. DOI: 10.1063/1.857528.
  • R. P. Chhabra, “Wall effect on free settling velocity of non-spherical particles in viscous media in cylindrical tubes,” Powder Technol., vol. 85, pp. 83–90, 1995. DOI: 10.1016/0032-5910(95)03012-x.
  • C. Y. Wang, “Settling of disks inside a vertical fluid-filled tube,” Appl. Sci. Res., vol. 56, pp. 43–51, 1996. DOI: 10.1007/bf02282921.
  • J. W. Pulley, R. G. Hussey, and A. M. J. Davis, “Low nonzero Reynolds number drag of a thin disk settling axisymmetrically within a cylindrical outer boundary,” Phys. Fluids., vol. 8, pp. 2275–2283, 1996. DOI: 10.1063/1.869014.
  • P. Michael, “Steady motion of a disk in a viscous fluid,” Phys. Fluids, vol. 9, pp. 466–471, 1966. DOI: 10.1063/1.1761699.
  • B. Munshi, R. P. Chhabra, and P. S. Ghoshdastidar, “A numerical study of steady incompressible Newtonian fluid flow over a disk at moderate Reynolds numbers,” Can. J. Chem. Eng., vol. 77, pp. 113–118, 1999. DOI: 10.1002/cjce.5450770118.
  • S. Nitin and R. P. Chhabra, “Wall effects in two-dimensional axisymmetric flow over a circular disk oriented normal to flow in a cylindrical tube,” Can. J. Chem. Eng., vol. 83, pp. 450–457, 2005. DOI: 10.1002/cjce.5450830307.
  • S. Nitin and R. P. Chhabra, “Sedimentation of a circular disk in power-law fluids,” J. Colloid Interface Sci., vol. 295, pp. 520–527, 2006. DOI: 10.1016/j.jcis.2005.08.024.
  • A. R. Shenoy and C. Kleinstreuer, “Flow over a thin circular disk at low to moderate Reynolds numbers,” J. Fluid Mech., vol. 605, pp. 253–262, 2008. DOI: 10.1017/s0022112008001626.
  • H. J. Zhong and C. B. Lee, “The wake of falling disks at low Reynolds numbers,” Acta Mech. Sinica., vol. 28, pp. 367–371, 2012. DOI: 10.1007/s10409-012-0036-4.
  • R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops and Particles. New York:Academic Press, 1978.
  • R. P. Chhabra, L. Agarwal, and N. K. Sinha, “Drag on non-spherical particles: an evaluation of available methods,” Powder Technol., vol. 101, pp. 288–295, 1999. DOI: 10.1016/s0032-5910(98)00178-8.
  • R. P. Chhabra, A. McKay, and P. Wong, “Drag on discs and square plates in pseudoplastic polymer solutions,” Chem. Eng. Sci., vol. 51, pp. 5353–5356, 1996. DOI: 10.1016/s0009-2509(96)00369-7.
  • H. Zhong, S. Chen, and C. Lee, “Experimental study of freely falling thin disks: Transition from planar zigzag to spiral,” Phys. Fluids, vol. 23, pp. 011702, 2011. DOI: 10.1063/1.3541844.
  • M. Chrust, G. Bouchet, and J. Duŝek, “Numerical simulation of the dynamics of freely falling discs,” Phys. Fluids, vol. 25, pp. 044102, 2013. DOI: 10.1063/1.4799179.
  • S. B. Field, M. Klaus, M. G. Moore, and F. Nori, “Chaotic dynamics of falling disks,” Nature, vol. 388, pp. 252–254, 1997. DOI: 10.1038/40817.
  • C. J. Kobus and G. L. Wedekind, “An experimental investigation into forced, natural and combined forced and natural convective heat transfer from stationary isothermal circular disks,” Int. J. Heat Mass Transfer, vol. 38, pp. 3329–3339, 1995. DOI: 10.1016/0017-9310(95)00096-r.
  • G. L. Wedekind and C. J. Kobus, “Predicting the average heat transfer coefficient for an isothermal vertical circular disk with assisting and opposing combined forced and natural convection,” Int. J. Heat Mass Transfer, vol. 39, pp. 2843–2845, 1996. DOI: 10.1016/0017-9310(95)00361-4.
  • C. J. Kobus and G. Shumway, “An experimental investigation into impinging forced convection heat transfer from stationary isothermal circular disks,” Int. J. Heat Mass Transfer, vol. 49, pp. 411–414, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.07.014.
  • G. L. Wedekind, “Convective heat transfer measurement involving flow past stationary circular disks,” J. Heat Transfer, vol. 111, pp. 1098–1100, 1989. DOI: 10.1115/1.3250777.
  • J. H. Merkin, “Free convection above a uniformly heated horizontal circular disk,” Int. J. Heat Mass Transfer, vol. 28, pp. 1157–1163, 1985. DOI: 10.1016/0017-9310(85)90123-1.
  • J. H. Merkin, “Free convection above a heated horizontal circular disk,” J. Appl. Math. Phys. (ZAMP), vol. 34, pp. 596–608, 1983.
  • S. B. Robinson and J. A. Liburdy, “Prediction of natural convective heat transfer from a horizontal heated disk,” J. Heat Transfer, vol. 109, pp. 906–911, 1987. DOI: 10.1115/1.3248202.
  • R. B. Bird, G. C. Dai, and B. J. Yarrusso, “The rheology and flow of viscoplastic materials.” Rev. Chem. Eng., vol. 1, pp. 1–70, 1983. DOI: 10.1515/revce-1983-0102.
  • H. A. Barnes, “The yield stress-a review or ‘παντα ρει’-everything flows?.” J. Non-Newt. Fluid Mech., vol. 81, pp. 133–178, 1999. DOI: 10.1016/s0377-0257(98)00094-9.
  • R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd ed. Oxford: Butterworth-Heinemann, 2008.
  • D. D. Atapattu, R. P. Chhabra, and P. H. T. Uhlherr, “Creeping sphere motion in Herschel-Bulkley fluids: Flow field and drag,” J. Non-Newt. Fluid Mech., vol. 59, pp. 245–265, 1995. DOI: 10.1016/0377-0257(95)01373-4.
  • H. Tabuteau, P. Coussot, and J. R. de Bruyn, “Drag force on a sphere in steady motion through a yield-stress fluid,” J. Rheol., vol. 51, pp. 125–137, 2007. DOI: 10.1122/1.2401614.
  • M. Beaulne and E. Mitsoulis, “Creeping motion of a sphere in tubes filled with Herschel-Bulkley fluids,” J. Non-Newt. Fluid Mech., vol. 72, pp. 55–71, 1997. DOI: 10.1016/s0377-0257(97)00024-4.
  • A. N. Beris, J. A. Tsamopoulos, R. C. Armstrong, and R. A. Brown, “Creeping motion of a sphere through a Bingham plastic,” J. Fluid Mech., vol. 158, pp. 219–244, 1985. DOI: 10.1017/s0022112085002622.
  • J. Blackery and E. Mitsoulis, “Creeping motion of a sphere in tubes filled with a Bingham plastic material,” J. Non-Newt. Fluid Mech., vol. 70, pp. 59–77, 1997. DOI: 10.1016/s0377-0257(96)01536-4.
  • N. Nirmalkar, R. P. Chhabra, and R. J. Poole, “Numerical predictions of momentum and heat transfer characteristics from a heated sphere in yield-stress fluids,” Ind. Eng. Chem. Res., vol. 52, pp. 6848–6861, 2013. DOI: 10.1021/ie400703t.
  • Prashant and J. J. Derksen, “Direct simulations of spherical particle motion in Bingham liquids,” Comput. Chem. Eng., vol. 35, pp. 1200–1214, 2011. DOI: 10.1016/j.compchemeng.2010.09.002.
  • N. Nirmalkar, A. K. Gupta, and R. P. Chhabra, “Natural convection from a heated sphere in Bingham plastic fluids,” Ind. Eng. Chem. Res., vol. 53, pp. 17818–17832, 2014. DOI: 10.1021/ie503152k.
  • Z. Yu and A. Wachs, “A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids,” J. Non-Newt. Fluid Mech., vol. 145, pp. 78–91, 2007. DOI: 10.1016/j.jnnfm.2007.02.007.
  • P. K. Das, A. K. Gupta, N. Nirmalkar, and R. P. Chhabra, “Effect of confinement on forced convection from a heated sphere in Bingham plastic fluids,” Korea-Aust. Rheol. J., vol. 27, pp. 75–94, 2015. DOI: 10.1007/s13367-015-0009-9.
  • A. K. Gupta and R. P. Chhabra, “Spheroids in viscoplastic fluids: Drag and heat transfer,” Ind. Eng. Chem. Res., vol. 53, pp. 18943–18965, 2014. DOI: 10.1021/ie501256v.
  • A. K. Gupta and R. P. Chhabra, “Mixed convection from a spheroid in Bingham plastic fluids: Effect of buoyancy-assisted flow,” Numer. Heat Transfer Part A, vol. 69, pp. 898–920, 2016. DOI: 10.1080/10407782.2015.1090832.
  • O. P. Patel, S. A. Patel, A. H. Raja, and R. P. Chhabra, “Forced convection heat transfer from a hemisphere in Bingham plastic fluids: effects of orientation and thermal boundary condition,” J. Energy Heat Mass Transfer, vol. 37, pp. 27–56, 2015.
  • O. Prakash, S. A. Patel, A. K. Gupta, and R. P. Chhabra, “Coarse particles in homogeneous non- Newtonian slurries: Combined effects of shear-thinning viscosity and fluid yield stress on drag and heat transfer from hemispherical particles,” Trans. Indian Inst. Metals, vol. 70, pp. 341–358, 2017. DOI: 10.1007/s12666-016-0983-8.
  • S. V. Nalluri, S. A. Patel, and R. P. Chhabra, “Mixed convection from a hemisphere in Bingham plastic fluids,” Int. J. Heat Mass Transfer, vol. 84, pp. 304–318, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.12.059.
  • G. Boardman and R. L. Whitmore, “Yield stress exerted on a body immersed in a Bingham fluid,” Nature, vol. 187, pp. 50–51, 1960. DOI: 10.1038/187050a0.
  • G. F. Brookes and R. L. Whitmore, “The static drags on bodies in Bingham plastics,” Rheol. Acta, vol. 7, pp. 188–193, 1968.
  • H. Pazwash, “ Drag forces on bodies moving through aqueous clay suspensions,”PhD Thesis, Civil Engineering Dept., University of Illinois, Urbana, January, 1970.
  • H. Pazwash and J. M. Robertson, “Forces on bodies in Bingham fluids,” J. Hydraul. Res., vol. 13, pp. 35–55, 1975. DOI: 10.1080/00221687509499719.
  • F. Ahonguio, L. Jossic, and A. Magnin, “Motion and stability of cones in a yield stress fluid,” AIChE J., vol. 61, pp. 709–717, 2015. DOI: 10.1002/aic.14651.
  • L. Jossic and A. Magnin, “Drag and stability of objects in a yield-stress fluid,” AIChE J., vol. 47, pp. 2666–2672, 2001. DOI: 10.1002/aic.690471206.
  • L. Jossic, F. Ahonguio, and A. Magnin, “Flow of a yield stress fluid perpendicular to a disc,” J. Non-Newt. Fluid Mech., vol. 191, pp. 14–24, 2013. DOI: 10.1016/j.jnnfm.2012.10.006.
  • H. Schlichting, Boundary-layer Theory. New York: McGraw-Hill, 1955.
  • G. S. Hansford and M. Litt, “Mass transport from a rotating disk into power-law liquids,” Chem. Eng. Sci., vol. 23, pp. 849–864, 1968. DOI: 10.1016/0009-2509(68)80020-x.
  • A. A. Rashaida, D. J. Bergstrom, and R. J. Sumner, “Mass transfer from a rotating disk to a Bingham fluid,” J. Appl. Math. Phys., vol. 73, pp. 108–111, 2005. DOI: 10.1115/1.2065607.
  • S. Xun, J. Zhao, L. Zheng, X. Chen, and X. Zhang, “Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing,” Int. J. Heat Mass Transfer, vol. 103, pp. 1214–1224, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.08.066.
  • C. Liu, M. Pan, L. Zheng, C. Ming, and X. Zhang, “Flow and heat transfer of Bingham plastic fluid over a rotating disk with variable thickness,” Z Naturforsch, A: Phys. Sci., vol. 71, pp. 1003–1015, 2016. DOI: 10.1515/zna-2016-0218.
  • P. T. Griffiths, “Flow of a generalised Newtonian fluid due to a rotating disk,” J. Non-Newt. Fluid Mech., vol. 221, pp. 9–17, 2015. DOI: 10.1016/j.jnnfm.2015.03.008.
  • R. Glowinski and A. Wachs, “On the numerical simulation of viscoplastic fluid flow,”in Handbook of Numerical Analysis, P. G. Ciarlet, Ed. North-Holland: Elsevier, 2011, 483–717.
  • T. C. Papanastasiou, “Flow of materials with yield,” J. Rheol., vol. 31, pp. 385–404, 1987. DOI: 10.1122/1.549926.
  • E. J. O’ Donovan and R. I. Tanner, “Numerical study of the Bingham squeeze film problem,” J. Non-Newt. Fluid Mech., vol. 15, pp. 75–83, 1984. DOI: 10.1016/0377-0257(84)80029-4.
  • M. Bercovier and M. Engelman, “A finite-element method for incompressible non-Newtonian flows,” J. Comput. Phys., vol. 36, pp. 313–326, 1980. DOI: 10.1016/0021-9991(80)90163-1.
  • R. R. Huilgol and G. H. R. Kefayati, “Natural convection problem in a Bingham fluid using the Operator-Splitting method,” J. Non-Newt. Fluid Mech., vol. 220, pp. 22–32, 2015. DOI: 10.1016/j.jnnfm.2014.06.005.
  • E. Mitsoulis and J. Tsamopoulos, “Numerical simulations of complex yield-stress fluid flows,” Rheol. Acta, vol. 56, pp. 231–258, 2017. DOI: 10.1007/s00397-016-0981-0.
  • Y. Dimakopoulos, M. Pavlidis, and J. Tsamopoulos, “Steady bubble rise in Herschel-Bulkley fluids and comparison of predictions via the Augmented Lagarangian Method with those via the Papanastasiou model,” J. Non-Newt. Fluid Mech., vol. 200, pp. 34–51, 2013. DOI: 10.1016/j.jnnfm.2012.10.012.
  • P. Saramito, “A damped Newton algorithm for computing viscoplastic fluid flows,” J. Non-Newt. Fluid Mech., vol. 238, pp. 6–15, 2016. DOI: 10.1016/j.jnnfm.2016.05.007.
  • R. L. Thompson and E. J. Soares, “Viscoplastic dimensionless numbers,” J. Non-Newt. Fluid Mech., vol. 238, pp. 57–64, 2016. DOI: 10.1016/j.jnnfm.2016.05.001.
  • C. W. Macosko, Rheology: Principles, Measurements and Applications. New York: Wiley, 1994.
  • T. J. Ui, R. G. Hussey, and R. P. Roger, “Stokes drag on a cylinder in axial motion,” Phys. Fluids, vol. 27, pp. 787–795, 1984. DOI: 10.1063/1.864706.
  • G. Juncu, “Unsteady heat transfer from an oblate/prolate spheroid,” Int. J. Heat Mass Transfer, vol. 53, pp. 3483–3494, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.04.009.
  • H. Brenner, “Forced convection heat and mass transfer at small Peclet numbers from a particle of arbitrary shape,” Chem. Eng. Sci., vol. 18, pp. 109–122, 1963. DOI: 10.1016/0009-2509(63)80020-2.
  • M. M. Yovanovich and K. Jafarpur, “Bounds on laminar natural convection from isothermal disks and finite plate of arbitrary shape for all orientations and Prandtl numbers,” ASME HTD, vol. 264, pp. 93–110, 1993.
  • R. W. Ansley and T. N. Smith, “Motion of spherical particles in a Bingham plastic,” AIChE J., vol. 13, pp. 1193–1196, 1965. DOI: 10.1002/aic.690130629.
  • C. Nouar, C. Desaubry, and H. Zenaidi, “Numerical and experimental investigation of thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder,” Eur. J. Mech. B/Fluids, vol. 17, pp. 875–900, 1998. DOI: 10.1016/s0997-7546(99)80018-1.
  • J. Peixinho, C. Desaubry, and M. Lebouché, “Heat transfer of a non-Newtonian fluid (Carbopol aqueous solution) in transitional pipe flow,” Int. J. Heat Mass Transfer, vol. 51, pp. 198–209, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.012.
  • E. Weber, M. Moyers-González, and T. I. Burghelea, “Thermorheological properties of a Carbopol gel under shear,” J. Non-Newt. Fluid Mech., vol. 183–184, pp. 14–24, 2012. DOI: 10.1016/j.jnnfm.2012.07.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.