Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 11
374
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of transport phenomena in high temperature proton exchange membrane fuel cells with different flow field designs

, , &
Pages 807-820 | Received 07 Sep 2017, Accepted 14 Nov 2017, Published online: 22 Dec 2017

References

  • Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, pp. 981–1007, 2011. DOI: 10.1016/j.apenergy.2010.09.030.
  • H. W. Wu, “A review of recent development: Transport and performance modeling of PEM fuel cells,” Appl. Energy, vol. 165, pp. 81–106, 2016. DOI: 10.1016/j.apenergy.2015.12.075.
  • T. V. Nguyen and R. E. White, “A water and heat management model for proton exchange membrane fuel cells,” J. Electrochem. Soc., vol. 140, pp. 2178–2186, 1993. DOI: 10.1149/1.2220792.
  • D. Natarajan and T. V. Nguyen, “Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell,” J. Power Sour., vol. 115, pp. 66–80, 2003. DOI: 10.1016/s0378-7753(02)00624-9.
  • Y. Zong, B. Zhou, and A. Sobiesiak, “Water and thermal management in a single PEM fuel cell with non-uniform stack temperature,” J. Power Sour., vol. 161, pp. 143–159, 2006. DOI: 10.1016/j.jpowsour.2006.02.107.
  • J. E. Dawes, N. S. Hanspal, O. A. Family, and A. Turan, “Three-dimensional CFD modeling of PEM fuel cells: An investigation into the effects of water flooding,” Chem. Eng. Sci., vol. 64, pp. 2781–2794, 2009. DOI: 10.1016/j.ces.2009.01.060.
  • J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt, “Acid-doped polybenzimidazoles: A new polymer electrolyte,” J. Electrochem. Soc., vol. 142, pp. L121–L123, 1995.
  • M. Litt, R. Ameri, Y. Wang, R. Savinell, and J. Wainwright, “Polybenzimidazoles/phosphoric acid solid polymer electrolytes: Mechanical and electrical properties,” Mater. Res. Soc. Symp., vol. 548, p. 313, 1999. DOI: 10.1557/proc-548-313.
  • S. Samms, S. Wasmus, and R. Savinell, “Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments,” J. Electrochem. Soc., vol. 143, pp. 1225–1232, 1996. DOI: 10.1149/1.1836621.
  • B. Xing and O. Savadogo, “The effect of acid doping on the conductivity of polybenzimidazole,” New Mater. Electrochem. Syst., vol. 2, pp. 95–102, 1999.
  • Q. F. Li, H. A. Hjuler, and N. Bjerrum, “Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications,” J. Appl. Electrochem., vol. 31, pp. 773–779, 2001.
  • S. H. Chan, S. K. Goh, and S. P. Jiang, “A mathematical model of polymer electrolyte fuel cell with anode CO kinetics,” Electrochim. Acta., vol. 48, pp. 1905–1919, 2003. DOI: 10.1016/s0013-4686(03)00269-x.
  • J. L. Zhang, Z. Xie, J. J. Zhang, Y. H. Tang, C. J. Song et al., “High temperature PEM fuel cells,” J. Power Sour., vol. 160, pp. 872–891, 2006. DOI: 10.1016/j.jpowsour.2006.05.034.
  • R. K. A. Rasheed, Q. Liao, C. Z. Zhang, and S. H. Chan, “A review on modeling of high temperature proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 42, pp. 3142–3165, 2017.
  • S. Shimpalee and S. Dutta, “Numerical prediction of temperature distribution in PEM fuel cells,” Numer. Heat Transfer A, vol. 38, pp. 111–128, 2000. DOI: 10.1080/10407780050135360.
  • R. Bradean, K. Promislow, and B. Wetton, “Transport phenomena in the porous cathode of a proton exchange membrane fuel cell,” Numer. Heat Transfer A, vol. 42, pp. 121–138, 2002. DOI: 10.1080/10407780290059468.
  • J. L. Yuan, M. Rokni, and B. Sunden, “A numerical investigation of gas flow and heat transfer in proton exchange membrane fuel cells,” Numer. Heat Transfer A, vol. 44, pp. 255–280, 2003. DOI: 10.1080/716100507.
  • J. L. Yuan, B. Sunden, M. Hou, and H. M. Zhang, “Three-dimensional analysis of two-phase flow and its effects on the cell performance of PEMFC,” Numer. Heat Transfer A, vol. 46, pp. 669–694, 2004. DOI: 10.1080/10407780490487731.
  • S. A. Li, J. L. Yuan, M. Andersson, G. N. Xie, and B. Sunden, “Wavy surface cathode gas flow channel effects on transport processes in a proton exchange membrane fuel cell,” ASME J. Electrochem. En. Conv. Stor., vol. 14, p. 031007, 2017. DOI: 10.1115/1.4036810.
  • S. A. Li, J. L. Yuan, M. Andersson, G. N. Xie, and B. Sunden, “Influence of anisotropic gas diffusion layers on transport phenomena in a proton exchange membrane fuel cell,” Int. J. Energy Res., vol. 41, pp. 2034–2050, 2017. DOI: 10.1002/er.3763.
  • L. Chen, Y. L. He, and W. Q. Tao, “The temperature effect on the diffusion processes of water and proton in the proton exchange membrane using molecular dynamics simulation,” Numer. Heat Transfer A, vol. 65, pp. 216–228, 2014. DOI: 10.1080/10407782.2013.784677.
  • S. A. Li and B. Sunden, “Three-dimensional modeling and investigation of high temperature proton exchange membrane fuel cells with metal foams as flow distributor,” Int. J. Hydrogen Energy, vol. 42, pp. 27323–27333, 2017. DOI: 10.1016/j.ijhydene.2017.09.014.
  • D. F. Cheddie and N. D. H. Munroe, “Three dimensional modeling of high temperature PEM fuel cells,” J. Power Sour., vol. 160, pp. 215–223, 2006. DOI: 10.1016/j.jpowsour.2006.01.035.
  • D. F. Cheddie and N. D. H. Munroe, “A two-phase model of an intermediate temperature PEM fuel cell,” Int. J. Hydrogen Energy, vol. 32, pp. 832–841, 2007. DOI: 10.1016/j.ijhydene.2006.10.061.
  • P. Chippar and H. Ju, “Three dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole membrane fuel cell,” Solid State Ionics, vol. 225, pp. 30–39, 2012. DOI: 10.1016/j.ssi.2012.02.031.
  • P. Chippar and H. Ju, “Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 28, pp. 7704–7714, 2013. DOI: 10.1016/j.ijhydene.2012.07.123.
  • J. Kim, M. Kim, T. Kang, Y. J. Sohn, and T. Song, “Degradation modeling and operational optimization for improving the lifetime of high temperature PEM fuel cells,” Energy, vol. 66, pp. 41–49, 2014.
  • Y. Yin et al., “Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes,” Int. J. Hydrogen Energy, vol. 39, pp. 13671–13680, 2014. DOI: 10.1016/j.ijhydene.2014.04.019.
  • H. Sun, C. Xie, H. Chen, and S. Almheiri, “A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane,” Appl. Energy, vol. 160, pp. 937–944, 2015. DOI: 10.1016/j.apenergy.2015.02.053.
  • G. Elden, M. Celik, G. Genc, and H. Yapici, “The effects of temperature on transport phenomena in phosphoric acid doped polybenzimidazole polymer membrane fuel cell,” Energy, vol. 103, pp. 772–783, 2016.
  • B. Sezgin, D. G. Caglayan, Y. Devrim, T. Steenberg, and I. Eroglu, “Modeling and sensitivity analysis of high temperature PEM fuel cells by using comsol multiphysics,” Int. J. Hydrogen Energy, vol. 41, pp. 10001–10009, 2016. DOI: 10.1016/j.ijhydene.2016.03.142.
  • D. G. Caglayan, B. Sezgin, Y. Devrim, and I. Eroglu, “Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures,” Int. J. Hydrogen Energy, vol. 41, pp. 10060–10070, 2016. DOI: 10.1016/j.ijhydene.2016.03.049.
  • R. Taccani and N. Zuliani, “Effect of flow field design on performances of high temperature PEM fuel cells: Experimental analysis,” Int. J. Hydrogen Energy, vol. 36, pp. 10282–10287, 2011. DOI: 10.1016/j.ijhydene.2010.10.026.
  • D. Singdeo, T. Dey, S. Gaikwad, S. J. Andreasen, and P. C. Ghosh, “A new modified serpentine flow field for application in high temperature polymer electrolyte fuel cell,” Appl. Energy, vol. 195, pp. 13–22, 2017. DOI: 10.1016/j.apenergy.2017.03.022.
  • D. Weng, J. S. Wainright, U. Landau, and R. F. Savinell, “Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures,” J. Electrochem. Soc., vol. 143, pp. 1260–1263, 1996. DOI: 10.1149/1.1836626.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.