Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 12
409
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of nanofluid transport through a wavy channel

, , &
Pages 869-890 | Received 20 Sep 2017, Accepted 14 Nov 2017, Published online: 27 Dec 2017

References

  • K. Stone and S. P. Vannka, Review of Literature on Heat Transfer Enhancement in Compact Heat Exchangers, Air Conditioning and Refrigeration Center, University of Illinois, Urbana, Illinois, 1996.
  • U. S. Choi, “Enhancing thermal conductivity of fluids with nano-particles,” ASME Fluids Eng. Div., vol. 231, pp. 99–103, 1995.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, pp. 58–64, 2000. DOI: 10.1016/s0142-727x(99)00067-3.
  • W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Exp. Therm. Fluid Sci., vol. 33, pp. 706–714, 2009. DOI: 10.1016/j.expthermflusci.2009.01.005.
  • R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” Int. J. Heat Mass Transfer, vol. 52, pp. 4675–4682, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.06.027.
  • S. O. Zerinc, S. Kakac, and A. G. Yazicioglu, “Enhanced thermal conductivity of nanofluids: a state-of-the-art review,” Microfluid Nanofluid, vol. 8, pp. 145–170, 2010.
  • R. S. Khedkar, S. S. Sonawane, and K. L. Wasewa, “Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids,” Int. Commun. Heat Mass Transfer, vol. 39, pp. 665–669, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.03.012.
  • B. L. Dehkordi et al., “Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS,” Heat Mass Transfer, vol. 49, pp. 1109–1115, 2013.
  • L. S. Sundar, E. V. Ramana, M. K. Singh, and A. C. M. Sousa, “Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al203 nanofluids for heat transfer applications: An experimental study,” Int. Commun. Heat Mass Transfer, vol. 56, pp. 86–95, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.06.009.
  • K. Khanafer, F. Tavakkoli, K. Vafai, and A. AlAmiri, “A critical investigation of the anomalous behavior of molten salt-based nanofluids,” Int. Commun. Heat Mass Transfer, vol. 69, pp. 51–58, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.10.002.
  • K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” Int. J. Heat Mass Transfer, vol. 54, pp. 4410–4428, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.048.
  • M. H. K. Darvanjooghi and M. N. Esfahany, “Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid,” Int. Commun. Heat Mass Transfer, vol. 77, pp. 148–154, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.08.001.
  • M. Shafahi, V. Bianco, K. Vafai, and O. Manca, “An investigation of the thermal performance of cylindrical heat pipes using nanofluid,” Int. J. Heat Mass Transfer, vol. 53, pp. 376–383, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.019.
  • M. Shafahi, V. Bianco, K. Vafai, and O. Manca, “Thermal performance of flat-shaped heat pipes using nanofluids,” Int. J. Heat Mass Transfer, vol. 53, pp. 1438–1445, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.007.
  • Z. H. Liu, Y. Y. Li, and R. Bao, “Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids,” Int. J. Therm. Sci. vol. 50, pp. 558–568, 2011. DOI: 10.1016/j.ijthermalsci.2010.11.013.
  • K. Alizad, K. Vafai, and M. Shafahi, “Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids,” Int. J. Heat Mass Transfer, vol. 55, pp. 140–155, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.08.050.
  • G. Kumaresan, S. Venkatachalapathy, L. G. Asirvatham, and S. Wongwises, “Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids,” Int. Commun. Heat Mass Transfer, vol. 57, pp. 208–215, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.08.001.
  • N. T. R. Kumar et al., “Heat transfer, friction factor and effectiveness analysis of nanofluid flow in a double pipe heat exchanger with return bend,” Int. Commun. Heat Mass Transfer, vol. 81, pp. 155–163, 2017.
  • M. Ghanbarpour, R. Khodabandeh, and K. Vafai, “An investigation of thermal performance improvement of a cylindrical heat pipe using nanofluid,” Heat Mass Transfer vol. 53, pp. 973–983, 2016. DOI: 10.1007/s00231-016-1871-9.
  • A. Albojamal and K. Vafai, “Analysis of single phase, discrete and mixture models, in predicting nanofluid transport,” Int. J. Heat Mass Transfer, vol. 114, pp. 225–237, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.030.
  • M. Akbari, N. Galanis, and A. Behzadmehr, “Comparative analysis of single and two phase models for CFD studies of nanofluid heat transfer,” Int. J. Therm. Sci. vol. 50, pp. 1343–1354, 2011. DOI: 10.1016/j.ijthermalsci.2011.03.008.
  • K. Stone and S. P. Vanka, “Numerical study of developing flow and heat transfer in a wavy passage,” J. Fluids Eng., vol. 121, pp. 713–719, 1999. DOI: 10.1115/1.2823528.
  • H. M. S. Bahaidarah, N. K. Anand, and H. C. Chen, “Numerical study of heat and momentum transfer in channels with wavy walls,” Numer. Heat Transfer, Part A, vol. 47, pp. 417–439, 2005. DOI: 10.1080/10407780590891218.
  • K. Nilpueng and S. Wongwises, “Flow pattern and pressure drop of vertical upward gas–liquid flow in sinusoidal wavy channels,” Exp. Therm. Fluid Sci., vol. 30, pp. 523–534, 2006. DOI: 10.1016/j.expthermflusci.2005.10.004.
  • P. Naphon, “Effect of wavy plate geometry configurations on the temperature and flow distributions,” Int. Commun. Heat Mass Transfer, vol. 36, pp. 942–946, 2009. DOI: 10.1016/j.icheatmasstransfer.2009.05.007.
  • T. A. Rush, T. A. Newell, and A. M. Jacobi, “An experimental study of flow and heat transfer in sinusoidal wavy passages,” Int. J. Heat Mass Transfer, vol. 42, pp. 1541–1553, 1999. DOI: 10.1016/s0017-9310(98)00264-6.
  • H. Heidary and M. J. Kermani, “Effect of nano-particles on forced convection in sinusoidal-wall channel,” Int. J. Heat Mass Transfer, vol. 37, pp. 1520–1527, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.08.018.
  • M. A. Ahmed, N. H. Shuaib, and M. Z. Yusoff, “Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid,” Int. J. Heat Mass Transfer, vol. 55, pp. 5891–5898, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.086.
  • Y. T. Yang, Y. H. Wang, and P. K. Tseng, “Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids,” Int. J. Heat Mass Transfer, vol. 51, pp. 9–17, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.12.002.
  • M. M. Rashidi, A. Hosseini, I. Pop, S. Kumar, and N. Freidoonimehr, “Comparative numerical study of single and two phase models of nanofluid heat transfer in wavy channel,” Appl. Math. Mech., vol. 35, pp. 831–848, 2014. DOI: 10.1007/s10483-014-1839-9.
  • U. Akdag, S. Akcay, and D. Demiral, “Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel,” Int. J. Heat Mass Transfer, vol. 59, pp. 17–23, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.10.008.
  • N. Shehzad, A. Zeeshan, R. Ellahi, and K. Vafai, “Convective heat transfer of nanofluid in a wavy channel: BuongiornO’s mathematical model,” J. Mol. Liq., vol. 222, pp. 446–455, 2016. DOI: 10.1016/j.molliq.2016.07.052.
  • ANSYS® Academic Research, Release 18.0, 2016.
  • M. S. Mojarrad, A. Keshavarz, and A. Shokouhi, “Nanofluids thermal behavior analysis using a new dispersion model along with single phase,” Heat Mass Transfer, vol. 49, pp. 1333–1343, 2013. DOI: 10.1007/s00231-013-1182-3.
  • S. Zeinali Heris, M. Nasr Esfahany, and G. Etemad, “Numerical investigation of nanofluid laminar convective heat transfer through a circular tube,” Numer. Heat Transfer, Part A, vol. 52, pp. 1043–1058, 2007. DOI: 10.1080/10407780701364411.
  • C. C. Wang, and C. K. Chen, “Forced convection in a wavy-wall channel,” Int. J. Heat Mass Transfer, vol. 45, pp. 2587–2595, 2002. DOI: 10.1016/s0017-9310(01)00335-0.
  • H. K. Versteeg and W. Malalasekera, An introduction to Computational Fluid Dynamics the Finite Volume Method, 2nd ed. England: Longman Scientific and Technical, 2007.
  • S. E. B. Maïga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” Int. J. Heat Fluid Flow, vol. 26, no. 4, pp. 530–546, 2005. DOI: 10.1016/j.ijheatfluidflow.2005.02.004.
  • C. T. Nguyen et al., “Temperature and particle-size dependent viscosity data for water-based nanofluids – hysteresis phenomenon,” Int. J. Heat Fluid Flow, vol. 28, no. 6, pp. 1492–1506, 2007. DOI: 10.1016/j.ijheatfluidflow.2007.02.004.
  • M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Convers. Manage. vol. 52, pp. 789–793, 2011. DOI: 10.1016/j.enconman.2010.06.072.
  • S. M. Vanaki, P. Ganesan, and H. A. Mohammed, “Numerical study of convective heat transfer of nanofluids: a review,” Renewable Sustainable Energy Rev., vol. 54, pp. 1212–1239, 2016. DOI: 10.1016/j.rser.2015.10.042.
  • A. Mokmeli and M. Saffar-Avval, Prediction of nanofluid convective heat transfer using the dispersion model. Int. J. Therm. Sci. vol. 49, pp. 471–478, 2010. DOI: 10.1016/j.ijthermalsci.2009.09.005.
  • A. Li and G. Ahmadi, “Dispersion and deposition of spherical particles from point sources in a turbulent channel flow,” Aerosol Sci. Technol., vol. 16, no. 4, pp. 209–226, 1992. DOI: 10.1080/02786829208959550.
  • W. J. Minkowycz, E. M. Sparrow, and J. Y. Murthy. Handbook of numerical heat transfer, 2nd ed. Chichester: John Wiley & Sons, 2006.
  • M. Manninen, V. Taivassalo, and S. Kallio, “On the mixture model for multiphase flow,” VTT Publ., vol. 288, pp. 3–67.
  • L. Schiller and A. Naumann, “A drag coefficient correlation,” Z. Ver. Deutsch. Ing. vol. 77, pp. 318–320, 1935.
  • V. Bianco, F. Chiacchio, O. Manca, and S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes,” Appl. Therm. Eng., vol. 29, nos. 17–18, pp. 3632–3642, 2009. DOI: 10.1016/j.applthermaleng.2009.06.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.