Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 2
155
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Phonon thermal transport in semi-disordered isotopic-superlattice graphene nanoribbons

ORCID Icon
Pages 115-124 | Received 09 Oct 2017, Accepted 11 Dec 2017, Published online: 23 Jan 2018

References

  • Y. Gu, Z. Ni, M. Chen, K. Bi, and Y. Chen, “The phonon thermal conductivity of single-layer graphene from complete phonon dispersion relations,” J. Heat Transfer – T ASME, vol. 134, no. 6, p. 062401, 2012.
  • D. L. Nika and A. A. Balandin, “Phonons and thermal transport in graphene and graphene-based materials,” Rep. Prog. Phys., vol. 80, no. 3, p. 036502, 2017. DOI:10.1088/1361-6633/80/3/036502.
  • X. Mu, T. Zhang, D. B. Go, and T. Luo, “Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices,” Carbon, vol. 83, pp. 208–216, 2015. DOI:10.1016/j.carbon.2014.11.028.
  • J.-W. Jiang, J. Lan, J.-S. Wang, and B. Li, “Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism,” J. Appl. Phys., vol. 107, no. 5, p. 054314, 2010.
  • M. Davies, B. Ganapathysubramanian, and G. Balasubramanian, “Optimizing isotope substitution in graphene for thermal conductivity minimization by genetic algorithm driven molecular simulations,” Appl. Phys. Lett., vol. 110, no. 13, p. 133107, 2017.
  • Z. Xie, X. Chen, X. Yu, Y. Zhang, H. Wang, and L. Zhang, “Reduction of phonon thermal conduction in isotopic graphene nanoribbon superlattices,” Sci. China.-Phys. Mech. Astron., vol. 60, no. 10, p. 107821, 2017. DOI:10.1007/s11433-017-9080-0.
  • S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater., vol. 11, no. 3, pp. 203–207, 2012. DOI:10.1038/nmat3207.
  • T. Ouyang, Y. P. Chen, K. K. Yang, and J. X. Zhong, “Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge,” EPL (Europhys. Lett.), vol. 88, no. 2, p. 28002, 2009. DOI:10.1209/0295-5075/88/28002.
  • P. Scuracchio, A. Dobry, S. Costamagna, and F. M. Peeters, “Tuning the polarized quantum phonon transmission in graphene nanoribbons,” Nanotechnology, vol. 26, no. 30, p. 305401, 2015. DOI:10.1088/0957-4484/26/30/305401.
  • J. Hu, S. Schiffli, A. Vallabhaneni, X. Ruan, and Y. P. Chen, “Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study,” Appl. Phys. Lett., vol. 97, no. 13, p. 133107, 2010.
  • O. Frank, L. Kavan, and M. Kalbac, “Carbon isotope labelling in graphene research,” Nanoscale, vol. 6, no. 12, pp. 6363–6370, 2014. DOI:10.1039/c4nr01257g.
  • B. Liu, C. D. Reddy, J. Jiang, H. Zhu, J. A. Baimova, S. V. Dmitriev, and K. Zhou, “Thermal conductivity of silicene nanosheets and the effect of isotopic doping,” J. Phys. D Appl. Phys., vol. 47, no. 16, p. 165301, 2014. DOI:10.1088/0022-3727/47/16/165301.
  • Y. Gu, X. Wu, and X. Ni, “An atomistic Green’s function method hybrid with a substructure technique for coherent phonon analysis,” Numer. Heat Transfer B-Fundam., vol. 70, no. 3, pp. 200–214, 2016. DOI:10.1080/10407790.2016.1193397.
  • T. Yamamoto, K. Watanabe, and K. Mii, “Empirical-potential study of phonon transport in graphitic ribbons,” Phys. Rev. B, vol. 70, no. 24, p. 245402, 2004. DOI:10.1103/physrevb.70.245402.
  • R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes. London: Imperial College Press, 1998.
  • J. S. Wang, J. Wang, and J. T. Lu, “Quantum thermal transport in nanostructures,” Eur. Phys. J. B, vol. 62, no. 4, pp. 381–404, 2008. DOI:10.1140/epjb/e2008-00195-8.
  • S. Datta, Quantum Transport: Atom to Transistor. New York: Cambridge University Press, 2005.
  • W. Zhang, T. S. Fisher, and N. Mingo, “The atomistic green’s function method: An efficient simulation approach for nanoscale phonon transport,” Numer. Heat Transfer Part B (Fundam.), vol. 51, no. 3–4, pp. 333–349, 2007.
  • P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, “Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods,” J. Appl. Phys., vol. 106, no. 6, p. 063503, 2009.
  • N. Mingo and L. Yang, “Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach,” Phys. Rev. B., vol. 68, p. 245406, 2003. DOI:10.1103/physrevb.68.245406.
  • W. Zhang, T. S. Fisher, and N. Mingo, “Simulation of interfacial phonon transport in Si-Ge heterostructures using an atomistic green’s function method,” J. Heat Transfer – T ASME, vol. 129, p. 483, 2007. DOI:10.1115/1.2709656.
  • N. Mingo, “Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations,” Phys. Rev. B, vol. 68, p. 113308, 2003. DOI:10.1103/physrevb.68.113308.
  • X.-F. Peng and K.-Q. Chen, “Thermal transport for flexural and in-plane phonons in graphene nanoribbons,” Carbon, vol. 77, pp. 360–365, 2014. DOI:10.1016/j.carbon.2014.05.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.