Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 3
297
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Flow structure and heat transfer characteristics of a 90°-turned pin-finned wedge duct with dimples at different locations

, , , &
Pages 143-162 | Received 18 Oct 2017, Accepted 20 Dec 2017, Published online: 23 Jan 2018

References

  • P. M. Ligrani, “Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines,” Int. J. Rotating Mach., vol. 2013, p. 275653, 2013. DOI: 10.1155/2013/275653.
  • J. C. Han, S. Dutta, and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed. New York: CRC Press, 2012.
  • S. Y. Won, G. I. Mahmood, and P. M. Ligrani, “Spatially-resolved heat transfer and flow structure in a rectangular channel with pin fins,” Int. J. Heat Mass Transfer, vol. 47, pp. 1731–1743, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.007.
  • S. C. Siw, M. K. Chyu, T. I. P. Shih, and M. A. Alvin, “Effects of pin detached space on heat transfer and pin-fin arrays,” ASME J. Heat Transfer, vol. 134, p. 081902, 2012. DOI: 10.1115/1.4006166.
  • Z. Chen, Q. Li, D. Meier, and H. J. Warnecke, “Convective heat transfer and pressure loss in rectangular ducts with drop-shaped pin fins,” Heat Mass Transfer, vol. 33, pp. 219–224, 1997. DOI: 10.1007/s002310050181.
  • J. J. Hwang and C. C. Lu, “Lateral-flow effect on endwall heat transfer and pressure drop in a pin-fin trapezoidal duct of various pin shapes,” ASME Paper No. 2000-GT-0232. New York: ASME, 2000.
  • O. Uzol and C. Camci, “Heat transfer, pressure loss and flow field measurements downstream of staggered two-row circular and elliptical pin fin arrays,” ASME J. Heat Transfer, vol. 127, pp. 458–471, 2005. DOI: 10.1115/1.1860563.
  • M. K. Chyu, C. H. Yen, and S. Siw, “Comparison of heat transfer from staggered pin fin arrays with circular, cubic and diamond shaped elements,” ASME Paper No. GT2007-28306. Montreal, Canada: ASME, 2007.
  • S. C. Siw, M. K. Chyu, and M. A. Alvin, “Heat transfer enhancement of internal cooling passage with triangular and semi-circular shaped pin-fin array,” ASME Paper No. GT2012-69266, 2012.
  • F. Zhou and I. Catton, “Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections,” Numer. Heat Transfer, Part A, vol. 60, pp. 107–128, 2011. DOI: 10.1080/10407782.2011.588574.
  • P. Li and K. Y. Kim, “Multiobjective optimization of staggered elliptical pin-fin arrays,” Numer. Heat Transfer, Part A, vol. 53, pp. 418–431, 2008. DOI: 10.1080/10407780701632759.
  • S. W. Chang, T. L. Yang, C. C. Huang, and K. F. Chiang, “Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array,” Int. J. Heat Mass Transfer, vol. 51, pp. 5247–5259, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.02.046.
  • X. Chi, T. I.-P. Shih, K. M. Bryden, S. Siw, M. K. Chyu, R. Ames, and R. A. Dennis, “Effects of pin-fin height on flow and heat transfer in a rectangular duct,” ASME Paper No. GT2011-46014. British Columbia, Canada: ASME, 2011.
  • I. K. Choi, T. Kim, S. J. Song, and T. J. Lu, “Endwall heat transfer and fluid flow around an inclined short cylinder,” Int. J. Heat Mass Transfer, vol. 50, pp. 919–930, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.08.012.
  • J. S. Park, K. M. Kim, D. H. Lee, H. H. Cho, and M. Chyu, “Heat transfer in rotating channel with inclined pin-fins,” ASME J. Turbomach., vol. 133, p. 021003, 2011. DOI: 10.1115/1.4000553.
  • A. K. Saha and S Acharya, “Unsteady RANS simulation of turbulent flow and heat transfer in a channel with periodic array of cubic pin-fins,” Numer. Heat Transfer, Part A, vol. 46, pp. 731–763, 2004. DOI: 10.1080/104077890504465.
  • P. M. Ligrani, M. M. Oliveira, and T. Blaskovich, “Comparison of heat transfer augmentation techniques,” AIAA J., vol. 41, pp. 337–362, 2003. DOI: 10.2514/2.1964.
  • G. I. Mahmood, M. L. Hill, D. L. Nelson, P. M. Ligrani, H.-K. Moon, and B. Glezer, “Local heat transfer and flow structure on and above a dimpled surface in a channel,” ASME J. Turbomach., vol. 123, pp. 115–123, 2001. DOI: 10.1115/1.1333694.
  • G. I. Mahmood, M. Z. Sabbagh, and P. M. Ligrani, “Heat transfer in a channel with dimples and protrusions on opposite walls,” J. Thermophys. Heat Transfer, vol. 15, pp. 275–283, 2001. DOI: 10.2514/2.6623.
  • N. K. Burgess and P. M. Ligrani, “Effects of dimple depth on Nusselt numbers and friction factors for internal cooling in a channel,” ASME Paper No. GT2004-54232. Vienna, Austria: ASME, 2004.
  • D. Zhang, Q. Jing, Y. Xie, and Z. Shen, “Numerical prediction on turbine blade internal tip cooling with pin-fin and dimple/protrusion structures,” Numer. Heat Transfer, Part A, vol. 70, pp. 1021–1040, 2016. DOI: 10.1080/10407782.2016.1214515.
  • H. Chung, K. M. Kim, H. G. Kwon, S. Lee, B. S. Kim, and H. H. Cho, “Heat transfer and fluid flow on dimpled surface with bleed flow,” Heat Transfer Eng., vol. 35, pp. 641–650, 2014. DOI: 10.1080/01457632.2013.837695.
  • Y. Rao, C. Y. Wang, and S. S. Zang, “Comparisons of flow friction and heat transfer performance in rectangular channels with pin fin-dimple, pin fin and dimple arrays,” ASME Paper No. GT2010-22442. Glasgow, UK: ASME, 2010.
  • Y. Rao, C. Y. Wang, Y. M. Xu, and S. S. Zang, “Spatially-resolved heat transfer characteristics in channels with pin fin and pin fin-dimple arrays,” Int. J. Therm. Sci., vol. 50, pp. 2277–2289, 2011. DOI: 10.1016/j.ijthermalsci.2011.06.013.
  • Y. Rao, C. Y. Wang, and Y. M. Xu, “An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths,” Int. J. Heat Mass Transfer, vol. 55, pp. 6723–6733, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.06.081.
  • Y. Rao, Y. M. Xu, and C. Y. Wang, “An experimental and numerical study of flow and heat transfer in channels with pin fin-dimple and pin fin arrays,” Exp. Therm. Fluid Sci., vol. 38, pp. 237–247, 2012. DOI: 10.1016/j.expthermflusci.2011.12.012.
  • Y. Rao, Y. M. Xu, and C. Y. Wang, “A numerical study of the flow and heat transfer in the pin fin-dimple channels with various dimple depths,” ASME J. Heat Transfer, vol. 134, p. 071902, 2012. DOI: 10.1115/1.4006098.
  • L. Luo, C. L. Wang, L. Wang, B. Sundén, and S. T. Wang, “Heat transfer and friction factor performance in a pin fin wedge duct with different dimple arrangements,” Numer. Heat Transfer, Part A, vol. 69, pp. 209–226, 2016. DOI: 10.1080/10407782.2015.1052301.
  • L. Luo, C. L. Wang, L. Wang, B. Sundén, and S. T. Wang, “Heat transfer and friction factor in a dimple-pin fin wedge duct with various dimple depth and converging angle,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, pp. 1954–1974, 2016. DOI: 10.1108/hff-02-2015-0043.
  • J. J. Hwang, D. Y. Lai, and Y. P. Tsia, “Heat transfer and pressure drop in pin-fin trapezoidal ducts,” ASME J. Turbomach., vol. 121, pp. 264–271, 1999. DOI: 10.1115/1.2841310.
  • J. J. Hwang and C. C. Lui, “Detailed heat transfer characteristic comparison in straight and 90-deg turned trapezoidal ducts with pin-fin arrays,” Int. J. Heat Mass Transfer, vol. 42, pp. 4005–4016, 1999. DOI: 10.1016/s0017-9310(99)00056-3.
  • A. P. Rallabandi, Y. H. Liu, and J. C. Han, “Heat transfer in trailing edge wedge-shaped pin-fin channels with slot ejection under high rotation numbers,” ASME J. Therm. Sci. Eng. Appl., vol. 3, p. 021007, 2011. DOI: 10.1115/1.4003746.
  • B. Zhu, X. Chi, R. A. Dennis, M. K. Chyu, M. A. Bryden, and T. I.-P. Shih, “Internal cooling inside an L-shaped duct with pin-fin turbulators under rotating and non-rotating conditions with and without sand particles,” ASME Paper No. GT2007-27598, 2007.
  • ANSYS CFX, Reference Guide, Release15, 2013.
  • L. Luo, C. Wang, L. Wang, B. Sundén, and S. Wang, “Parametric influence on convective heat transfer for an outlet guide vane,” Numer. Heat Transfer, Part A, vol. 70, pp. 331–346, 2016. DOI: 10.1080/10407782.2016.1173492.
  • ANSYS ICEM CFD, Reference Guide, Release 15, 2013.
  • D. H. Sang, H. G. Kwon, and H. H. Cho, “Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers,” Energy, vol. 35, pp. 5357–5364, 2010. DOI: 10.1016/j.energy.2010.07.022.
  • J. Liu, Y. D. Song, G. N. Xie, and B. Sunden, “Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions,” Energy, vol. 79, pp. 1–19, 2014. DOI: 10.1016/j.energy.2014.05.075.
  • M. A. Elyyan and D. K. Tafti, “Effect of Coriolis forces in a rotating channel with dimples and protrusions,” Int. J. Heat Fluid Flow, vol. 31, pp. 1–18, 2010. DOI: 10.1016/j.ijheatfluidflow.2009.10.002.
  • Y. Rao, Y. Feng, B. Li, and B. Weigand, “Experimental and numerical study of heat transfer and flow friction in channels with dimples of different shapes,” ASME J. Heat Transfer, vol. 137, p. 031901, 2015. DOI: 10.1115/1.4029036.
  • J. F. Fan, W. K. Ding, J. F. Zhang, Y. L. He, and W. Q. Tao, “A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving,” Int. J. Heat Mass Transfer, vol. 52, pp. 33–44, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.