Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 5
395
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Coupled lattice Boltzmann finite volume method for conjugate heat transfer in porous media

ORCID Icon, &
Pages 291-306 | Received 11 Nov 2017, Accepted 18 Feb 2018, Published online: 14 Mar 2018

References

  • A. Bhattacharya and R. L. Mahajan, “Finned metal foam heat sinks for electronics cooling in forced convection,” J. Electron. Packag., vol. 124, no. 3, pp. 155–163, 2002. DOI: 10.1115/1.1464877.
  • S. Mahjoob and K. Vafai, “A synthesis of fluid and thermal transport models for metal foam heat exchangers,” Int. J. Heat Mass Transfer, vol. 51, pp. 3701–3711, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.12.012.
  • S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Clarendon Press, 2001.
  • S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Ann. Rev. Fluid Mech., vol. 30, no. 1, pp. 329–364, 1998. DOI: 10.1146/annurev.fluid.30.1.329.
  • C. K. Aidun and J. R. Clausen, “Lattice-Boltzmann method for complex flows,” Ann. Rev. Fluid Mech., vol. 42, pp. 439–472, 2010. DOI: 10.1146/annurev-fluid-121108-145519.
  • J. Hao and L. Zhu, “A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction,” Comput. Math. Appl., vol. 59, no. 1, pp. 185–193, 2010. DOI: 10.1016/j.camwa.2009.06.055.
  • D. Beugre, S. Calvo, G. Dethier, M. Crine, D. Toye, P. Marchot, et al., “Lattice Boltzmann 3D flow simulations on a metallic foam,” J. Comput. Appl. Math., vol. 234, pp. 2128–2134, 2010. DOI: 10.1016/j.cam.2009.08.100.
  • A. Montessori, G. Falcucci, P. Prestininzi, M. La Rocca, and S. Succi, “Regularized lattice Bhatnagar–Gross–Krook model for two- and three-dimensional cavity flow simulations,” Phys. Rev. E, vol. 89, pp. 1–8, 2014. DOI: 10.1103/PhysRevE.89.053317.
  • D. Chiappini, G. Bella, A. Festuccia, and A. Simoncini, “Direct numerical simulation of an open-cell metallic foam through lattice Boltzmann method,” Commun. Comput. Phys., vol. 18, no. 3, pp. 707–722, 2015. DOI: 10.4208/cicp.191114.270315a.
  • G. Di Ilio, D. Chiappini, S. Ubertini, G. Bella, and S. Succi, “Hybrid lattice Boltzmann method on overlapping grids,” Phys. Rev. E, vol. 95, no. 1, p. 013309, 2017. DOI: 10.1103/PhysRevE.95.013309.
  • G. Falcucci, G. Bella, G. Chiatti, S. Chibbaro, M. Sbragaglia, S. Succi, et al., “Lattice Boltzmann models with mid-range interactions,” Commun. Comput. Phys., vol. 2, no. 6, pp. 1071–1084, 2007.
  • G. Bella, D. Chiappini, and S. Ubertini, “Modeling liquid break-up through a kinetic approach,” SAE Int. J. Eng., vol. 2, no. 3, pp. 390–399, 2010. DOI: 10.4271/2009-24-0023.
  • G. Falcucci, S. Ubertini, D. Chiappini, and S. Succi, “Modern lattice Boltzmann methods for multiphase microflows,” IMA J. Appl. Math., vol. 76, no. 5, pp. 712–725, 2011. DOI: 10.1093/imamat/hxr014.
  • M. Ashrafizaadeh and H. Bakhshaei, “A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations,” Comput. Math. Appl., vol. 58, no. 5, pp. 1045–1054, 2009. DOI: 10.1016/j.camwa.2009.02.021.
  • G. Di Ilio, D. Chiappini, and G. Bella, “A comparison of numerical methods for non-Newtonian fluid flows in a sudden expansion,” Int. J. Modern Phys. C, vol. 27, no. 11, p. 1650139, 2016. DOI: 10.1142/S0129183116501394.
  • A. Montessori, P. Prestininzi, M. La Rocca, G. Falcucci, S. Succi, E. Kaxiras, et al., “Effects of Knudsen diffusivity on the effective reactivity of nanoporous catalyst media,” J. Comput. Sci., vol. 17, pp. 377–383, 2015. DOI: 10.1016/j.jocs.2016.04.006.
  • V. K. Krastev, G. Amati, E. Jannelli, and G. Falcucci, “Direct numerical simulation of SCR reactors through kinetic approach,” in: SAE Technical Paper - 2016-01-0963, SAE International, Detroit, SAE Technical Paper— 2016-01-0963, 2016. DOI: 10.4271/2016-01-0963.
  • R. Al-Raoush and M. Alsaleh, “Simulation of random packing of polydisperse particles,” Powder Technol., vol. 176, no. 1, pp. 47–55, 2007. DOI: 10.1016/j.powtec.2007.02.007.
  • A. D’Orazio, M. Corcione, and G. P. Celata, “Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition,” Int. J. Therm. Sci., vol. 43, no. 6, pp. 575–586, 2004. DOI: 10.1016/j.ijthermalsci.2003.11.002.
  • A. D’Orazio and S. Succi, “Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions,” Future Gener. Comput. Syst., vol. 20, no. 6, pp. 935–944, 2004. DOI: 10.1016/j.future.2003.12.005.
  • H. N. Dixit and V. Babu, “Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method,” Int. J. Heat Mass Transfer, vol. 49, nos. 3–4, pp. 727–739, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.07.046.
  • M. Wang, J. He, J. Yu, and N. Pan, “Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials,” Int. J. Therm. Sci., vol. 46, no. 9, pp. 848–855, 2007. DOI: 10.1016/j.ijthermalsci.2006.11.006.
  • S. Gokaltun and G. S. Dulikravich, “Lattice Boltzmann computations of incompressible laminar flow and heat transfer in a constricted channel,” Comput. Math. Appl., vol. 59, no. 7, pp. 2431–2441, 2010. DOI: 10.1016/j.camwa.2009.08.045.
  • C.-H. Liu, K.-H. Lin, H.-C. Mai, and C.-A. Lin, “Thermal boundary conditions for thermal lattice Boltzmann simulations,” Computers &. Math. Appl., vol. 59, no. 7, pp. 2178–2193, 2010. DOI: 10.1016/j.camwa.2009.08.043.
  • Q. Liao and T.-C. Jen, Application of Lattice Boltzmann Method in Fluid Flow and Heat Transfer. London, UK: INTECH Open Access Publisher, 2011.
  • X. Chen and P. Han, “A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms,” Int. J. Heat Fluid Flow, vol. 21, no. 4, pp. 463–467, 2000. DOI: 10.1016/S0142-727X(00)00028-X.
  • Y. Peng, C. Shu, and Y. T. Chew, “Simplified thermal lattice Boltzmann model for incompressible thermal flows,” Phys. Rev. E, vol. 68, no. 2, pp. 1–8, 2003. DOI: 10.1103/PhysRevE.68.026701.
  • F. Kuznik and G. Rusaouen, “Numerical prediction of natural convection occurring in building components: A double-population lattice boltzmann method,” Numer. Heat Transfer, Part A: Appl., vol. 52, no. 4, pp. 315–335, 2007. DOI: 10.1080/00397910601149959.
  • J. Cai and X. Huai, “Study on fluid-solid coupling heat transfer in fractal porous medium by lattice Boltzmann method,” Appl. Therm. Eng., vol. 30, nos. 6–7, pp. 715–723, 2010. DOI: 10.1016/j.applthermaleng.2009.12.001.
  • H.-C. Mai, K.-H. Lin, C.-H. Yang, and C.-A. Lin, “A thermal lattice Boltzmann model for flows with viscous heat dissipation,” Comput. Model. Engineering & Sci., vol. 61, no. 1, pp. 45–63, 2010.
  • A. A. Mohamad and A. Kuzmin, “A critical evaluation of force term in lattice Boltzmann method, natural convection problem,” Int. J. Heat Mass Transfer, vol. 53, nos. 5–6, pp. 990–996, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.11.014.
  • R. Khazaeli, S. Mortazavi, and M. Ashrafizaadeh, “Application of a ghost fluid approach for a thermal lattice Boltzmann method,” J. Comput. Phys., vol. 250, pp. 126–140, 2013. DOI: 10.1016/j.jcp.2013.04.044.
  • A. Tarokh, A. A. Mohamad, and L. Jiang, “Simulation of conjugate heat transfer using the lattice Boltzmann method,” Numer. Heat Transfer, Part A: Appl., vol. 63, no. 3, pp. 159–178, 2013. DOI: 10.1080/10407782.2012.725009.
  • C. Demuth, M. A. Mendes, S. Ray, and D. Trimis, “Performance of thermal lattice Boltzmann and finite volume methods for the solution of heat conduction equation in 2D and 3D composite media with inclined and curved interfaces,” Int. J. Heat Mass Transfer, vol. 77, pp. 979–994, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.051.
  • H. S. Amir and K. Mohammad, “Numerical investigation of nanofluid flow and conjugated heat transfer in a micro-heat-exchanger using the lattice boltzmann method,” Numer. Heat Transfer, Part A: Appl., vol. 70, no. 12, pp. 1390–1401, 2016. DOI: 10.1080/10407782.2016.1244394.
  • S. C. Mishra, S. Panigrahy, and V. J. Ghatage, “Analysis of combined mode heat transfer in a porous medium using the lattice boltzmann method,” Numer. Heat Transfer, Part A: Appl., vol. 69, no. 10, pp. 1092–1105, 2016. DOI: 10.1080/10407782.2015.1125711.
  • S. Biswas, P. Sharma, B. Mondal, and G. Biswas, “Analysis of mixed convective heat transfer in a ribbed channel using the lattice boltzmann method,” Numer. Heat Transfer, Part A: Appl., vol. 68, no. 1, pp. 75–98, 2015. DOI: 10.1080/10407782.2014.965095.
  • G. Imani, M. Maerefat, and K. Hooman, “Lattice boltzmann simulation of conjugate heat transfer from multiple heated obstacles mounted in a walled parallel plate channel,” Numer. Heat Transfer, Part A: Appl., vol. 62, no. 10, pp. 798–821, 2012. DOI: 10.1080/10407782.2012.709442.
  • M. A. Moussaoui, M. Jami, A. Mezrhab, and H. Naji, “Lattice boltzmann simulation of convective heat transfer from heated blocks in a horizontal channel,” Numer. Heat Transfer, Part A: Appl., vol. 56, no. 5, pp. 422–443, 2009. DOI: 10.1080/10407780903244338.
  • D. Chiappini, “Numerical simulation of natural convection in open-cells metal foams,” Int. J. Heat Mass Transfer, vol. 117, pp. 527–537, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.022.
  • L. Li, C. Chen, R. Mei, and J. F. Klausner, “Conjugate heat and mass transfer in the lattice Boltzmann equation method,” Phys. Rev. E, vol. 89, 043308–1–21. DOI: 10.1103/PhysRevE.89.043308.
  • G. Pareschi, N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, “Conjugate heat transfer with the entropic lattice Boltzmann method,” Phys. Rev. E, vol. 94, no. 1, pp. 013305, 2016. DOI: 10.1103/PhysRevE.94.013305.
  • K. Xu and X. He, “Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations,” J. Comput. Phys., vol. 190, no. 190, pp. 100–117, 2003. DOI: 10.1016/S0021-9991(03)00255-9.
  • Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method,” Phys. Rev. E—Stat., Nonlinear, Soft Matter Phys., vol. 65, no. 4, 046308–1–6. DOI: 10.1103/PhysRevE.65.046308.
  • S. Bettaibi, F. Kuznik, E. Sediki, and S. Succi, “Lattice Boltzmann simulation of mixed convection heat transfer in a driven cavity with non-uniform heating of the bottom wall,” Commun. Theor. Phys., vol. 63, no. 1, pp. 91–100, 2015. DOI: 10.1016/j.physleta.2014.06.032.
  • A. A. Mohamad, Q. W. Tao, Y. L. He, and S. Bawazeer, “Treatment of transport at the interface between multilayers via the lattice Boltzmann method,” Numer. Heat Transfer, Part B: Fundam., vol. 67, no. 2, pp. 124–134, 2014. DOI: 10.1080/10407790.2014.949563.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation, 1980.
  • C. Shu, Y. Peng, and Y. T. Chew, “Simulation of natural nonvection in a square cavity By Taylor series expansion-and least squares-based lattice Boltzmann method,” Int. J. Modern Phys. C, vol. 13, no. 10, pp. 1399–1414, 2002. DOI: 10.1142/S0129183102003966.
  • Y. Peng, C. Shu, and Y. T. Chew, “A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity,” J. Comput. Phys., vol. 193, no. 1, pp. 260–274, 2004. DOI: 10.1016/j.jcp.2003.08.008.
  • T. Zhang and D. Che, “Lattice boltzmann simulation of natural convection in an inclined square cavity with spatial temperature variation,” Numer. Heat Transfer, Part A: Appl., vol. 66, no. 6, pp. 712–732, 2014. DOI: 10.1080/10407782.2014.894408.
  • W. M. Rohsenow and J. R. Hartnett, Handook of Heat Transfer. New York, NY: McGraw-Hill, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.