Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 6
143
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Study of wave number effect in wavy plate for improving the film cooling effectiveness at spanwise direction

&
Pages 408-427 | Received 09 Oct 2017, Accepted 16 Feb 2018, Published online: 14 Mar 2018

References

  • B. A. Jubran, “Correlation and prediction of film cooling from two rows of holes,” ASME J. Turbo Mach., vol. 111, pp. 502–509, 1989. DOI:10.1115/1.3262300.
  • A. A. Amer, B. A. Jubran, and M. A. Hamdan, “Comparison of different two-equation turbulence models for prediction of film cooling from two rows of holes,” Numer. Heat Transfer, Part A., vol. 21, pp. 143–162, 1992. DOI:10.1080/10407789108944870.
  • A. O. Demuren, W. Rodi, and B. Schonung, “Systematic study of film cooling with a three-dimensional calculation procedure,” ASME J. Turbo Mach., vol. 108, pp. 124–130, 1986. DOI:10.1115/1.3262011.
  • J. Zhou, M. Salcudean, and I. S. Gartshore, “Prediction of film cooling by discrete-hole injection,”ASME paper 1993: presented at the International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati, Ohio, May 24–27, pp. 93-GT-75, 1993.
  • J. Andreopoulos, “Measurements in a jet-pipe flow issuing perpendicularly into a cross stream,” ASME J. Fluid Eng., vol. 104, pp. 493–499, 1982. DOI:10.1115/1.3241892.
  • A. Azzi, M. Abidat, B. A. Jubran, and G. S. Theodoridis, “Film cooling predictions of simple and compound angle injection from one and two staggered rows,” Numer. Heat Transfer, Part A., vol. 40, pp. 273–294, 2001. DOI:10.1080/10407782.2001.10120637.
  • A. Azzi and D. Lakehal, “Perspectives in modeling film-cooling of turbine blades by transcending conventional two-equation turbulence models,” Proc. ASME/IMECE, New York, Nov., vol. 124, pp. 11–16, 2002.
  • J. E. Sargison, S. M. Guo, M. L. Oldfield, G. D. Lock, and A. J. Rawlinson, “A converging slot-hole film-cooling geometry-part 1: Low-speed flat-plate heat transfer and loss,” ASME J. Turbo Mach., vol. 124, pp. 453–460, 2002.
  • A. Azzi and B. A. Jubran, “Numerical modeling of film cooling from converging slot-hole,” Heat Mass Transfer, vol. 43, pp. 381–388, 2006. DOI:10.1007/s00231-006-0115-9.
  • A. Khorsi and A. Azzi, “Computation film cooling from three different holes geometries,” Mechanika, vol. 6, no. 86, pp. 32–37, 2010.
  • E. A. Lutum, J. von Wolfersdorf, K. Semmler, J. Dittmar, and B. Weigand, “An experimental investigation of film cooling on a convex surface subjected to favourable pressure gradient flow,” Int. J. Heat Mass Transfer., vol. 44, pp. 939–951, 2001. DOI:10.1016/s0017-9310(00)00158-7.
  • Y. Q. Zu, Y. Y. Yan, J. Q. Li, and Z. W. Han, “Wetting behaviours of a single droplet on biomimetic micro structured surfaces,” J. Bionic Eng., vol. 7, pp. 191–198, 2010. DOI:10.1016/s1672-6529(09)60202-x.
  • J. Wang, “Experimental investigation of the transient thermal performance of a bent heat pipe with grooved surface,” J. Appl. Energy, vol. 86, pp. 2030–2037, 2009.
  • M.-S. Hung, P.-P. G. Din, and P.-H. Chen, “Effects of injection angle orientation on concave and convex surfaces film cooling,” Exp. Therm. Fluid Sci., vol. 33, pp. 292–305, 2009.
  • S. Lips, F. Lefèvre, and B. Jocelyn, “Physical mechanisms involved in grooved flat heat pipes: Experimental and numerical analyses,” Int. J. Therm. Sci., vol. 50, pp. 1243–1252, 2011. DOI:10.1016/j.ijthermalsci.2011.02.008.
  • S. Celik and E. C. Nsofor, “Performance analysis of a refrigerating system with a grooved-tube evaporator,” Appl. Therm. Eng., vol. 73, pp. 743–748, 2014. DOI:10.1016/j.applthermaleng.2014.08.033.
  • L.-R. Tian, L.-Q. Red, Q.-P. Lid, Z.-W. Had, and, X. Jiang, “The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces,” J. Bionic Eng., vol. 4, pp. 109–116, 2007. DOI:10.1016/s1672-6529(07)60022-5.
  • L. Guo, Z. C. Liu, Y. Y. Yan, and Z. W. Han, “Numerical modeling and analysis of grooved surface applied to film cooling,” J. Bionic Eng., vol. 8, pp. 464–473, 2011. DOI:10.1016/s1672-6529(11)60052-8.
  • A. Z. Dellil, A. Azzi, and B. A. Jubran, “Turbulent flow and convective heat transfer in a wavy wall channel,” Heat Mass Transfer, vol. 40, pp. 793–799, 2004. DOI:10.1007/s00231-003-0474-4.
  • S. Khajehhasani and B. A. Jubran, “A numerical investigation of film cooling performance through variations in the location of discrete sister holes,” Appl. Therm. Eng., vol. 107, pp. 345–364, 2016. DOI:10.1016/j.applthermaleng.2016.06.135.
  • S. Khajehhasani and B. A. Jubran, “A numerical evaluation of the performance of film cooling from a circular exit shaped hole with sister holes influence,” Heat Transfer Eng., vol. 37, pp. 183–197, 2016. DOI:10.1080/01457632.2015.1044415.
  • C. M. Rhie and W. L. Chow, “A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation,” J. AIAA, vol. 21, pp. 1225–1532, 1983.
  • F. R. Menter, “Zonal two-equation ω−k turbulence model for aerodynamic flows,”AIAA, Orlando, FL, pp. 93–2906, 1993.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no 8. pp. 1598–1605, 1994. DOI:10.2514/3.12149.
  • M. Kandula and D. C. Wilcox, “An examination of k−ω turbulence model for boundary layers, free shear layers, and separation flows,” AIAA, San Diego, CA, paper 95-2317, 1995.
  • W. P. Jones and B. E. Launder, “The prediction of laminarization with a two-equation model of turbulence,” Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972. DOI:10.1016/0017-9310(72)90076-2.
  • A. K. Sinha, D. G. Bogard, and M. E. Crawford, “Film-cooling effectiveness downstream of a single row of holes with variable density ratio,” ASME J. Turbo Mach., vol. 113, pp. 442–449, 1991. DOI:10.1115/1.2927894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.