Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 6
271
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of gas radiative property models in the presence of nongray particles

, , &
Pages 385-407 | Received 20 Nov 2017, Accepted 16 Feb 2018, Published online: 26 Mar 2018

References

  • M. F. Modest, “The treatment of nongray properties in radiative heat transfer: From past to present,” J. Heat Transfer, vol. 135, pp. 061801–1–12, 2013. DOI: 10.1115/1.4023596.
  • R. M. Goody and Y. L. Yung, Atmospheric Radiation. Oxford, UK: Clarendon Press, 1989.
  • A. A. Lacis and V. Oinas, “A description of the correlated-k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res., vol. 96, pp. 9027–9063, 1991. DOI: 10.1029/90jd01945.
  • V. Goutière, A. Charette, and L. Kiss, “Comparative performance of nongray gas modeling techniques,” Numer. Heat Transfer, Part B: Fundam., vol. 41, nos. 3–4, pp. 361–381, 2010. DOI: 10.1080/104077902753541069.
  • P. J. Coelho, P. Perez, and M. El Hafi, “Benchmark numerical solutions for radiative heat transfer in two-dimensional axisymmetric enclosures with nongray sooting media,” Numer. Heat Transfer, Part B: Fundam., vol. 43, no. 5, pp. 425–444, 2003. DOI: 10.1080/713836240.
  • H. C. Hottel and A. F. Sarofim, Radiative Transfer. New York: McGraw-Hill, 1967.
  • M. K. Denison and B. W. Webb, “An absorption-line blackbody distribution function for efficient calculation of gas radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer, vol. 50, pp. 499–510, 1993. DOI: 10.1016/0022-4073(93)90043-h.
  • M. K. Denison, “A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers,”, Ph.D. thesis, Brigham Young University, Provo, UT, 1994.
  • M. K. Denison and B. W. Webb, “The spectral line-based weighted-sum-of-gray-gases model for H2O–CO2 mixtures,” ASME J. Heat Transfer, vol. 117, pp. 788–792, 1995.
  • J. Pearson, B. W. Webb, V. P. Solovjov, and J. Ma, “Updated correlation of the absorption line blackbody distribution function for H2O based on the HITEMP2010 database,” J. Quant. Spectr. Rad. Transfer, vol. 128, pp. 10–17, 2013. DOI: 10.1016/j.jqsrt.2012.07.016.
  • F. N. Çayan and N. Selçuk, “A comparative study of modeling of radiative heat transfer using MOL solution of DOM with gray gas, wide-band correlated-k, and spectral line-based weighted sum of gray gases models,” Numer. Heat Transfer, Part B: Fundam., vol. 52, no. 3, pp. 281–296, 2007. DOI: 10.1080/10407790701372728.
  • R. Demarco, J. L. Consalvi, A. Fuentes, and S. Melis, “Assessment of radiative property models in non-gray sooting media,” Int. J. Therm. Sci., vol. 50, pp. 1672–1684, 2011. DOI: 10.1016/j.ijthermalsci.2011.03.026.
  • P. D. Nguen. et al., “Application of the spectral line-based weighted-sum-of-gray-gases model (SLWSGG) to the calculation of radiative heat transfer in steel reheating furnaces firing on low heating value gases,” J. Phys.: Conf. Ser., vol. 369/012008, pp. 1–10, 2012.
  • B. Garten, “Detailed radiation modeling of a particle-oxidation flame,” Int. J. Therm. Sci., vol. 87, pp. 68–84, 2015. DOI: 10.1016/j.ijthermalsci.2014.07.022.
  • G. Ozen and N. Selçuk, “SLW model for computational fluid dynamics modeling of combustion systems: Implementation and validation,” Numer. Heat Transfer, Part B: Fundam., vol. 70, no. 1, pp. 47–55, 2016. DOI: 10.1080/10407790.2016.1173499.
  • D. G. Goodwin, “Infrared optical constants of coal slags,” Ph.D. thesis, Stanford University, Stanford, USA, 1986.
  • D. Bäckström. et al., “Particle composition and size distribution in coal flames—The influence on radiative heat transfer,” Exp. Therm. Fluid Sci. vol. 64, pp. 70–80, 2015. DOI: 10.1016/j.expthermflusci.2015.02.010.
  • R. Johansson, “Efficient treatment of non-grey radiative properties of particles and gases in modelling of radiative heat transfer in combustion environments,” Int. J. Heat Mass Transfer, vol. 108, pp. 519–528, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.042.
  • R. Johansson, T. Gronarz, and R. Kneer, “Influence of index of refraction and particle size distribution on radiative heat transfer in a pulverized coal combustion furnace,” J. Heat Transfer, vol. 139/042702, pp. 1–8, 2017. DOI: 10.1115/1.4035205.
  • C. Ates, N. Selçuk, and G. Kulah, “Effect of changing biomass source on radiative heat transfer during co-firing of high-sulfur content lignite in fluidized bed combustors,” Appl. Therm. Eng., vol. 128, pp. 539–550, 2018. DOI: 10.1016/j.applthermaleng.2017.09.011.
  • C. Ates, N. Selçuk, and G. Kulah, “Effect of limestone addition on radiative heat transfer during co-firing of high-sulfur content lignite with biomass in fluidized bed combustors,” 10th Mediterranean Combustion Symposium, Naples, Italy, September 17–21, 2017.
  • M. P. Mengüç, S. Manickavasagam, and D. A. D’Sa, “Determination of radiative properties of pulverized coal particles from experiments,” Fuel, vol. 73, pp. 613–625, 1994. DOI: 10.1016/0016-2361(94)90048-5.
  • C. Ates, O. Sen, N. Selçuk, and G. Kulah, “Influence of spectral particle properties on radiative heat transfer in optically thin and thick media of fluidized bed combustors,” Int. J. Therm. Sci., vol. 122, pp. 266–280, 2017. DOI: 10.1016/j.ijthermalsci.2017.08.023.
  • T. Gronarz. et al., “Quantification of the influence of parameters determining radiative heat transfer in an oxy-fuel operated boiler,” Fuel Process. Technol., vol. 157, pp. 76–89, 2017. DOI: 10.1016/j.fuproc.2016.11.012.
  • C. Ates, N. Selçuk, and G. Kulah, “Significance of particle concentration distribution on radiative heat transfer in circulating fluidized bed combustors,” Int. J. Heat Mass Transfer, vol. 117, pp. 58–70, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.138.
  • C. Ates, N. Selçuk, G. Ozen, and G. Kulah, “Benchmarking grey particle approximations against nongrey particle radiation in circulating fluidized bed combustors,” Numer. Heat Transfer, Part B: Fundam., vol. 71, no. 5, 467–484, 2017. DOI: 10.1080/10407790.2017.1309144.
  • N. Crnomarkovic, M. Sijercic, S. Belosevic, D. Tucakovic, and T. Zivanovic, “Numerical investigation of processes in the lignite-fired furnace when simple gray gas and weighted sum of gray gases models are used,” Int. J. Heat Mass Transfer, vol. 56, pp. 197–205, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.09.024.
  • C. Yin, “On gas and particle radiation in pulverized fuel combustion furnaces,” Appl. Energy, vol. 157, pp. 554–561, 2015. DOI: 10.1016/j.apenergy.2015.01.142.
  • C. Ates, G. Ozen, N. Selcuk, and G. Kulah, “Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors,” J. Quant. Spectrosc. Radiat. Transfer, vol. 182, pp. 264–276, 2016. DOI: 10.1016/j.jqsrt.2016.06.009.
  • S. Hjartstam, R. Johansson, K. Andersson, and F. Johnsson, “Computational fluid dynamics modeling of oxy-fuel flames: The role of soot and gas radiation,” Energy Fuels, vol. 26, pp. 2786–2797, 2012. DOI: 10.1021/ef200983e.
  • J. Zhang, T. Ito, S. Ito, D. Riechelmann, and T. Fujimori, “Numerical investigation of oxy-coal combustion in a large-scale furnace: Non-gray effect of gas and role of particle radiation,” Fuel, vol. 139, pp. 87–93, 2015. DOI: 10.1016/j.fuel.2014.08.020.
  • R. Johansson, B. Leckner, K. Andersson, and F. Johnsson, “Influence of particle and gas radiation in oxy-fuel combustion,” Int. J. Heat Mass Transfer, vol. 65, pp. 143–152, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.05.073.
  • P. Perez, M. El Hafi, P. J. Coelho, and R. Fournier, “Accurate solutions for radiative heat transfer in two-dimensional axisymmetric enclosures with gas radiation and reflective surfaces,” Numer. Heat Transfer, Part B: Fundam., vol. 47, no. 1, pp. 39–63, 2004. DOI: 10.1080/10407790490515639.
  • V. P. Solovjov and B. W. Webb, “An efficient method for modeling radiative transfer in multicomponent gas mixtures with soot,” J. Heat Transfer, vol. 123, pp. 450–456, 2001. DOI: 10.1115/1.1350824.
  • V. P. Solovjov, D. Lemonnier, and B. W. Webb, “SLW-1 modeling of radiative heat transfer in nonisothermal nonhomogeneous gas mixtures with soot,” J. Heat Transfer, vol. 133, pp. 102701–1–9, 2011. DOI: 10.1115/1.4003903.
  • J. Meulemans, “An assessment of some non-gray global radiation models in enclosures,” J. Phys.: Conf. Ser., vol. 676, pp. 012017, 1–12, 2016. DOI: 10.1088/1742-6596/676/1/012017.
  • M. F. Modest and R. J. Riazzi, “Assembly of full-spectrum k-distributions from a narrow-band database: Effects of mixing gases, gases and nongray absorbing particles, and mixtures with nongray scatterers in nongray enclosures,” J. Quant. Spectrosc. Radiat. Transfer, vol. 90, pp. 169–189, 2005. DOI: 10.1016/j.jqsrt.2004.03.007.
  • N. Selçuk, Y. Gogebakan, H. Harmandar, and H. Altindag, “Effect of recycle on combustion and emission characteristics of high sulfur lignite,” Comb. Sci. Technol., vol. 176, pp. 959–975, 2004.
  • L. A. Dombrovsky, “The use of transport approximation and diffusion-based models in radiative transfer calculations,” Comput. Therm. Sci.: Int. J., vol. 4, pp. 297–315, 2012. DOI: 10.1615/computthermalscien.2012005050.
  • C. B. Ludwig, W. Malkmus, J. E. Reardon, and J. A. L. Thomson, “Handbook of infrared radiation from combustion gases,” NASA SP-3080, Washington, DC: Scientific and Technical Information Office, NASA, 1973 Available: https://ntrs.nasa.gov/search.jsp?R=19730019075. Accessed: Mar. 15, 2018.
  • A. Soufiani and J. Taine, “High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2, and CO and correlated-k (CK) model for H2O and CO2,” Int. J. Heat Mass Transfer, vol. 40, pp. 987–991, 1997. DOI: 10.1016/0017-9310(96)00129-9.
  • M. Kozan and N. Selçuk, “Investigation of radiative heat transfer in freeboard of a 0.3 MWt AFBC test rig,” Combust. Sci. Technol., vol. 153, pp. 113–126, 2000. DOI: 10.1080/00102200008947254.
  • N. Selçuk, A. Batu, and I. Ayranci, “Performance of method of lines solution of discrete ordinates method in the freeboard of a bubbling fluidized bed combustor,” J. Quant. Spectrosc. Radiat. Transfer, vol. 73, pp. 503–516, 2002. DOI: 10.1016/s0022-4073(01)00225-4.
  • B. G. Carlson and K. D. Lathrop, “Transport theory-the method of discrete ordinates,” in Computing Methods in Reactor Physics, H. Greenspan, C. N. Kelber, and D. Okrent, Eds. New York: Gordon & Breach, 1968, pp. 165–266.
  • N. Selçuk and N. Kayakol, “Evaluation of angular quadrature and spatial differencing schemes for discrete ordinates method in rectangular furnaces,” Proc. of 31st National Heat Transfer Conference, Houston, Texas, USA, ASME HTD, vol. 325, pp. 151–158, August 3–6, 1996.
  • R. Weiner, B. A. Schmitt and H. Podhaisky, “ROWMAP-a ROW-code with Krylov techniques for large stiff ODEs,” Halle/Saale, Germany: FB Mathematik und Informatik, Universitaet Halle, Technical Report 44, 1996.
  • S. H. Kim and K. Y. Huh, “A new angular discretization scheme of the finite volume method for 3-D radiative heat transfer in absorbing, emitting and anisotropically scattering media,” Int. J. Heat Mass Transfer, vol. 43, pp. 1233–1242, 2000. DOI: 10.1016/s0017-9310(99)00211-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.