Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 8
276
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics simulation on the effect of nanoparticle deposition and nondeposition on the nanofluid explosive boiling heat transfer

, , &
Pages 553-564 | Received 22 Jan 2018, Accepted 26 Mar 2018, Published online: 04 Jun 2018

References

  • M. K. Sang, R. Kumar, and G. Moreno, “Pool boiling characteristics of low concentration nanofluids,” Int. J. Heat Mass Transf., vol. 53, no. 5–6, pp. 972–981, 2010. DOI: j.ijheatmasstransfer.2009.11.018.
  • S. M. You, J. H. Kim, and K. H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,” Appl. Phys. Lett., vol. 83, no. 16, pp. 3374–3376, 2003. DOI: 10.1063/1.1619206.
  • G. Moreno, S. J. Oldenburg, S. M. You, and J. H. Kim, Pool boiling heat transfer of alumina-water, zinc oxide-water and alumina-water + ethylene glycol nanofluids. ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, pp. 625–632, American Society of Mechanical Engineers, San Francisco, CA, USA, 2005. DOI: 10.1115/HT2005-72375.
  • K. Henderson, Y. G. Park, L. Liu, and A. M. Jacobi, “Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube,” Int. J. Heat Mass Transf., vol. 53, no. 5–6, pp. 944–951, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.11.026.
  • M. M. Sarafraz, and F. Hormozi, “Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus,” Exp. Therm. Fluid Sci., vol. 52, no. 12, pp. 205–214, 2014. DOI: 10.1016/j.expthermflusci.2013.09.012.
  • D. Wen, and Y. Ding, “Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids,” J. Nanopart. Res., vol. 7, no. 2–3, pp. 265–274, 2005. DOI: 10.1007/s11051-005-3478-9.
  • H. T. Bao, Determination of Pool Boiling Critical Heat Flux Enhancement in Nanofluids. ASME 2007 International Mechanical Engineering Congress and Exposition, pp. 289–299, American Society of Mechanical Engineers, Seattle, WA, USA, 2007.
  • S. Soltani, S. G. Etemad, and J. Thibault, “Pool boiling heat transfer of non-Newtonian nanofluids,” Int. Commun. Heat Mass Transf., vol. 37, no. 1, pp. 29–33, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.08.005.
  • S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Tran., vol. 46, no. 5, pp. 851–862, 2003. DOI: 10.1016/S0017-9310(02)00348-4.
  • S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 4105–4116, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.02.002.
  • M. M. Sarafraz, and F. Hormozi, “Nucleate pool boiling heat transfer characteristics of dilute Al2O3–ethyleneglycol nanofluids,” Int. Commun. Heat Mass Transf., vol. 58, pp. 96–104, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.08.028.
  • Y. Dou, L. V. Zhigilei, N. Winograd, and B. J. Garrison, “Explosive boiling of water films adjacent to heated surfaces: A microscopic description,” J. Phys. Chem. A., vol. 105, no. 12, pp. 2748–2755, 2000. DOI: 10.1021/jp003913o.
  • T. H. Yang, and C. Pan, “Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient,” Int. J. Heat Mass Transf., vol. 48, no. 17, pp. 3516–3526, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.03.015.
  • D. Tao, Z. Yang, and H. Wu, “Molecular simulations of R141b boiling flow in micro/nano channel: Interfacial phenomena,” Energ. Convers. Manage., vol. 47, no. 15–16, pp. 2178–2191, 2006. DOI: 10.1016/j.enconman.2005.12.007.
  • S. C. Maroo, and J. N. Chung, “Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics,” J. Colloid Interf. Sci., vol. 328, no. 1, pp. 134, 2008. DOI: 10.1016/j.jcis.2008.09.018.
  • J. Yu, and H. Wang, “A molecular dynamics investigation on evaporation of thin liquid films,” Int. J. Heat Mass Transf., vol. 55, no. 4, pp. 1218–1225, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.09.035.
  • X. Yang, and Y. Y. Yan, “Molecular dynamics simulation for microscope insight of water evaporation on a heated magnesium surface,” Appl. Therm. Eng., vol. 31, no. 5, pp. 640–648, 2011. DOI: 10.1016/j.applthermaleng.2010.08.019.
  • T. Yamamoto, and M. Matsumoto, “Initial stage of nucleate boiling: Molecular dynamics investigation,” J.Therm. Sci. Tech., vol. 7, no. 1, pp. 334–349, 2012. DOI: 10.1299/jtst.7.334.
  • A. K. M. M. Morshed, T. C. Paul, and J. A. Khan, “Effect of nanostructures on evaporation and explosive boiling of thin liquid films: A molecular dynamics study,” Appl. Phys. A., vol. 105, no. 2, pp. 445–451, 2011. DOI: 10.1007/s00339-011-6577-8.
  • T. Fu, Y. Mao, and Y. Tang, “Molecular dynamics simulation on rapid boiling of thin water films on cone-shaped nanostructure surfaces,” Nanosc. Microsc. Therm., vol. 19, no. 1, pp. 17–30, 2015. DOI: 10.1080/15567265.2014.991480.
  • W. Wang, H. Zhang, C. Tian, and X. Meng, “Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 158, 2015. DOI: 10.1186/s11671-015-0830-6.
  • C. Hu et al., “Molecular dynamics simulation of nanofluid’s flow behaviors in the near-wall model and main flow model,” Microfluid Nanofluid., vol. 17, no. 3, pp. 581–589, 2014. DOI: 10.1007/s10404-013-1323-5.
  • W. Wang, S. Huang, and X. Luo, “MD simulation on nano-scale heat transfer mechanism of sub-cooled boiling on nano-structured surface,” Int. J. Heat Mass Transf., vol. 100, pp. 276–286, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.018.
  • W. Cui, “Mechanism of momentum and heat transfer enhancement in nanofluids by molecular dynamics simulation,” Ph.D. thesis, Dalian University of Technology, Dalian, 2013.
  • W. R. Gambill and J. H. Lienhard, “An upper bound for the critical boiling heat flux,” J. Heat Transf., vol. 111, no. 3, pp. 815–818, 1989. DOI: 10.1115/1.3250759.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.