Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 10
270
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of double-diffusive mixed convection and entropy generation in a lid-driven trapezoidal enclosure with a heat source

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 702-720 | Received 02 Jan 2018, Accepted 26 Mar 2018, Published online: 31 May 2018

References

  • A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. Boca Raton, FL: CRC Press, 1995.
  • S. Mahmud and A. S. Islam, “Laminar free convection and entropy generation inside an inclined wavy enclosure,” Int. J. Therm. Sci., vol. 42, pp. 1003–1012, 2003. DOI: 10.1016/S1290-0729(03)00076-0.
  • C. Balaji, M. Hölling, and H. Herwig, “Entropy generation minimization in turbulent mixed convection flows,” Int. Commun. Heat Mass Tran., vol. 34, pp. 544–552, 2007. DOI: 10.1016/j.icheatmasstransfer.2007.01.015.
  • I. Zahmatkesh, “On the importance of thermal boundary conditions in heat transfer and entropy generation for natural convection inside a porous enclosure,” Int. J. Therm. Sci., vol. 47, pp. 339–346, 2008. DOI: 10.1016/j.ijthermalsci.2007.02.008.
  • A. H. Mahmoudi, M. Shahi, and F. Talebi, “Entropy generation due to natural convection in a partially open cavity with a thin heat source subjected to a nanofluid,” Numer. Heat Tr. A Appl., vol. 61, pp. 283–305, 2012. DOI: 10.1080/10407782.2012.647990.
  • M. Esmaeilpour and M. Abdollahzadeh, “Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls,” Int. J. Therm. Sci., vol. 52, pp. 127–136, 2012. DOI: 10.1016/j.ijthermalsci.2011.08.019.
  • A. Bejan, Convection Heat Transfer. Hoboken, NJ: John Wiley & Sons, 2013.
  • A. Arefmanesh, A. Aghaei, and H. Ehteram, “Mixed convection heat transfer in a CuO–water filled trapezoidal enclosure, effects of various constant and variable properties of the nanofluid,” Appl. Math. Model., vol. 40, pp. 815–831, 2016. DOI: 10.1016/j.apm.2015.10.043.
  • M. Abbaszadeh, A. Ababaei, A. A. Abbasian Arani, and A. A. Sharifabadi, “MHD forced convection and entropy generation of CuO-water nanofluid in a microchannel considering slip velocity and temperature jump,” J. Braz. Soc. Mech. Sci. Eng., vol. 3, pp. 775–790, 2016. DOI: 10.1007/s40430-016-0578-7.
  • A. Ababaei, M. Abbaszadeh, and A. A. Abbasian Arani, “Determining the optimum arrangement of micromixers in a microchannel filled with CuO-water nanofluid via minimizing entropy generation,” Defect Diffu. Forum., vol. 378, pp. 39–58, 2017. DOI: 10.4028/www.scientific.net/DDF.378.39.
  • A. Ababaei, A. A. Abbasian Arani, and A. Aghaei, “Numerical investigation of forced convection of nanofluid flow in microchannels: effect of adding micromixer,” J. Appl. Fluid Mech., vol. 10, pp. 1759–1772, 2017. DOI: 10.18869/acadpub.jafm.73.243.27364.
  • A. Baytaş, “Entropy generation for natural convection in an inclined porous cavity,” Int. J. Heat Mass Tran., vol. 43, pp. 2089–2099, 2000. DOI: 10.1016/S0017-9310(99)00291-4.
  • S. Mahmud and R. A. Fraser, “Magnetohydrodynamic free convection and entropy generation in a square porous cavity,” Int. J. Heat Mass Tran., vol. 47, pp. 3245–3256, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.02.005.
  • G. Ovando-Chacon, S. Ovando-Chacon, and J. Prince-Avelino, “Entropy generation due to mixed convection in an enclosure with heated corners,” Int. J. Heat Mass Tran., vol. 55, pp. 695–700, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.041.
  • H. Khorasanizadeh, M. Nikfar, and J. Amani, “Entropy generation of Cu–water nanofluid mixed convection in a cavity,” Eur. J. Mech. B-Fluid., vol. 37, pp. 143–152, 2013. DOI: 10.1016/j.euromechflu.2012.09.002.
  • R. Nayak, S. Bhattacharyya, and I. Pop, “Numerical study on mixed convection and entropy generation of a nanofluid in a lid-driven square enclosure,” J. Heat Transf., vol. 138, p. 012503, 2016. DOI: 10.1115/1.4031178.
  • A. Aghaei, H. Khorasanizadeh, G. Sheikhzadeh, and M. Abbaszadeh, “Numerical study of magnetic field on mixed convection and entropy generation of nanofluid in a trapezoidal enclosure,” J. Magn. Magn. Mater., vol. 403, pp. 133–145, 2016. DOI: 10.1016/j.jmmm.2015.11.067.
  • C. Beghein, F. Haghighat, and F. Allard, “Numerical study of double-diffusive natural convection in a square cavity,” Int. J. Heat Mass Tran., vol. 35, pp. 833–846, 1992. DOI: 10.1016/0017-9310(92)90251-M.
  • K. Ghorayeb and A. Mojtabi, “Double diffusive convection in a vertical rectangular cavity,” Phys Fluids., vol. 9, pp. 2339–2348, 1997. DOI: 10.1063/1.869354.
  • M. A. Teamah, “Double-diffusive laminar natural convection in a symmetrical trapezoidal enclosure,” Alexandria Eng. J., vol. 45, pp. 251–263, 2006.
  • M. Corcione, S. Grignaffini, and A. Quintino, “Correlations for the double-diffusive natural convection in square enclosures induced by opposite temperature and concentration gradients,” Int. J. Heat Mass Tran., vol. 81, pp. 811–819, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.013.
  • M. Nazari, L. Louhghalam, and M. H. Kayhani, “Lattice Boltzmann simulation of double diffusive natural convection in a square cavity with a hot square obstacle,” Chinese J. Chem. Eng., vol. 23, pp. 22–30, 2015. DOI: 10.1016/j.cjche.2014.10.008.
  • G. Swapna, L. Kumar, and P. Rana, “Finite element study of radiative double-diffusive mixed convection magneto-micropolar flow in a porous medium with chemical reaction and convective condition,” Alexandria Eng. J., vol. 57, pp. 107–120, 2017. DOI: 10.1016/j.aej.2016.12.001.
  • A. A. Abbasian Arani, A. Ababaei, G. A. Sheikhzadeh, and A. Aghaei, “Numerical simulation of double-diffusive mixed convection in an enclosure filled with nanofluid using Bejan’s heatlines and masslines,” Alexandria Eng. J., 2017. DOI: 10.1016/j.aej.2017.03.034.
  • A. Bejan, “Combined heat and lass transfer by natural convection in a vertical enclosure,” J. Heat Transf., vol. 109, pp. 104–112, 1987. DOI: 10.1115/1.3248027.
  • V. Costa, “Double diffusive natural convection in a square enclosure with heat and mass diffusive walls,” Int. J. Heat Mass Tran., vol. 40, pp. 4061–4071, 1997. DOI: 10.1016/S0017-9310(97)00061-6.
  • A. M. Al-Amiri, K. M. Khanafer, and I. Pop, “Numerical simulation of combined thermal and mass transport in a square lid-driven cavity,” Int. J. Therm. Sci., vol. 46, pp. 662–671, 2007. DOI: 10.1016/j.ijthermalsci.2006.10.003.
  • M. Hasanuzzaman, M. Rahman, and H. F. Öztop, “Effects of Lewis number on heat and mass transfer in a triangular cavity,” Int. Commun. Heat Mass Tran., vol. 39, pp. 1213–1219, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.07.002.
  • F. Oueslati, B. Ben-Beya, and T. Lili, “Double-diffusive natural convection and entropy generation in an enclosure of aspect ratio 4 with partial vertical heating and salting sources,” Alexandria Eng. J., vol. 52, pp. 605–625, 2013. DOI: 10.1016/j.aej.2013.09.006.
  • Q. Qin, Z. Xia, and Z. F. Tian, “High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients,” Int. J. Heat Mass Tran., vol. 71, pp. 405–423, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.035.
  • N. Arbin, H. Saleh, and I. Hashim, “Numerical investigation of double-diffusive convection in an open cavity with partially heated wall via heatline approach,” Int. J. Therm. Sci., vol. 100, pp. 169–184, 2016. DOI: 10.1016/j.ijthermalsci.2015.09.017.
  • M. A. Teamah and A. I. Shehata, “Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities,” Alexandria Eng. J., vol. 55, pp. 1037–1046, 2016. DOI: 10.1016/j.aej.2016.02.033.
  • S. Kimura and A. Bejan, “The ‘heatline’ visualization of convective heat transfer,” J. Heat Transf., vol. 105, pp. 916–919, 1983. DOI: 10.1115/1.3245684.
  • V. Costa, “Bejan’s heatlines and masslines for convection visualization and analysis,” Appl. Mech. Rev., vol. 59, pp. 126–145, 2006. DOI: 10.1115/1.2177684.
  • P. Biswal and T. Basak, “Bejan’s heatlines and numerical visualization of convective heat flow in differentially heated enclosures with concave/convex side walls,” Energy, vol. 64, pp. 69–94, 2014. DOI: 10.1016/j.energy.2013.10.032.
  • P. Biswal and T. Basak, “Sensitivity of heatfunction boundary conditions on invariance of Bejan’s heatlines for natural convection in enclosures with various wall heatings,” Int. J. Heat Mass Tran., vol. 89, pp. 1342–1368, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.030.
  • M. Rahman, H. F. Öztop, and S. Mekhilef, “Simulation of unsteady heat and mass transport with heatline and massline in a partially heated open cavity,” Appl. Math. Model., vol. 39, pp. 1597–1615, 2015. DOI: 10.1016/j.apm.2014.09.022.
  • A. Alsabery, A. Chamkha, and S. Hussain, “Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer,” Adv Powder Technol., vol. 26, pp. 1230–1244, 2015. DOI: 10.1016/j.apt.2015.06.005.
  • H. F. Oztop and K. Al-Salem, “A review on entropy generation in natural and mixed convection heat transfer for energy systems,” Renew. Sust. Energ Rev., vol. 16, pp. 911–920, 2012. DOI: 10.1016/j.rser.2011.09.012.
  • M. Magherbi, H. Abbassi, and N. Hidouri, “Second law analysis in convective heat and mass transfer,” Entropy, vol. 8, pp. 1–17, 2006. DOI: 10.3390/e8010001.
  • K. Ghachem, L. Kolsi, and C. Mâatki, “Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller,” Int. Commun. Heat Mass Trans., vol. 39, pp. 869–876, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.04.010.
  • F.-Y. Zhao, D. Liu, and G.-F. Tang, “Application issues of the streamline, heatline and massline for conjugate heat and mass transfer,” Int. J. Heat Mass Tran., vol. 50, pp. 320–334, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.06.026.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Harlow, Essex, England: Pearson Education, 2007.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow., New York, NY, Hemisphere, 1980, pp. 25–73.
  • G. G. Ilis, M. Mobedi, and B. Sunden, “Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls,” Int. Commun. Heat Mass Tran., vol. 35, pp. 696–703, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.