Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 8
1,298
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A geometric study on shell side heat transfer and flow resistance of a six-start spirally corrugated tube

, , , , & ORCID Icon
Pages 565-582 | Received 16 Mar 2018, Accepted 27 Mar 2018, Published online: 29 May 2018

References

  • M. A. Pakhomov and V. I. Terekhov, “Numerical modeling of turbulent flow structure and heat transfer in a droplet-laden swirling flow in a pipe with a sudden expansion,” Numer. Heat Transfer A., vol. 71, no. 7, pp. 721–736, 2017. DOI: 10.1080/10407782.2017.1308740.
  • E. Tian, Y. L. He, and W. Q. Tao, “Numerical simulation of finned tube bank across a staggered circular-pin-finned tube bundle,” Numer. Heat Transfer A., vol. 68, no. 7, pp. 737–760, 2015. DOI: 10.1080/10407782.2015.1012855.
  • I. Petracci, M. Luca, and G. Fabio, “Numerical simulation of the optimal spacing for a radial finned tube cooled by a rectangular jet. I – average thermal results,” Int. J. Therm. Sci., vol. 104, pp. 54–67, 2016. DOI: 10.1016/j.ijthermalsci.2016.01.001.
  • G. Ravi, L. J. Alvarado, C. Marsh, and D. A. Kessler, “Laminar flow forced convection heat transfer behavior of a phase change material fluid in finned tubes,” Numer. Heat Transfer A., vol. 55, no. 8, pp. 721–738, 2009. DOI: 10.1080/10407780902864672.
  • J. H. Kim, K. E. Jansen, and M. K. Jensen, “Analysis of heat transfer characteristics in internally finned tubes,” Numer. Heat Transfer A., vol. 46, no. 1, pp. 1–21, 2004. DOI: 10.1080/10407780490454296.
  • B. Shome, “Mixed convection laminar flow and heat transfer of liquids in horizontal internally finned tubes,” Numer. Heat Transfer A., vol. 33, no. 1, pp. 65–83, 1998. DOI: 10.1080/10407789808913928.
  • D. Dandotiya and N. D. Banker, “Numerical investigation of heat transfer enhancement in a multitube thermal energy storage heat exchanger using fins,” Numer. Heat Transfer A., vol. 72, no. 5, pp. 389–400, 2017. DOI: 10.1080/10407782.2017.1376976.
  • P. Li, Z. Liu, W. Liu, and G. Chen, “Numerical study on heat transfer enhancement characteristics of tube inserted with centrally hollow narrow twisted tapes,” Int. J. Heat Mass Transfer., vol. 88, pp. 481–491, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.103.
  • P. Liu, N. Zheng, and F. Shan, “Numerical study on characteristics of heat transfer and friction factor in a circular tube with central slant rods,” Int. J. Heat Mass Transfer., vol. 99, pp. 268–282, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.059.
  • X. Zhang, Z. Liu, and W. Liu, “Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes,” Int. J. Therm. Sci., vol. 58, no. 2, pp. 157–167, 2012. DOI: 10.1016/j.ijthermalsci.2012.02.025.
  • Z. Cao, Z. Wu, H. Luan, and B. Sunden, “Numerical study on heat transfer enhancement for laminar flow in a tube with mesh conical frustum inserts,” Numer. Heat Transfer A., vol. 72, no. 1, pp. 21–39, 2017. DOI: 10.1080/10407782.2017.1353386.
  • S. R. Shabanian, I. Shiva, and T. Hatami, “Application of intelligent methods for the prediction and optimization of thermal characteristics in a tube equipped with perforated twisted tape,” Numer. Heat Transfer A., vol. 70, no. 1, pp. 30–47, 2016. DOI: 10.1080/10407782.2016.1139982.
  • R. Beigzadeh, M. Rahimi, M. Parvizi, and S. Eiamsa, “Application of ann and Ga for the prediction and optimization of thermal and flow characteristics in a rectangular channel fitted with twisted tape vortex generators,” Numer. Heat Transfer A., vol. 65, no. 2, pp. 186–199, 2014. DOI: 10.1080/10407782.2013.826010.
  • A. Ebrahimi and E. Roohi, “Numerical study of flow patterns and heat transfer in mini twisted oval tubes,” Int. J. Mod. Phys. C., vol. 26, no. 12, 1550140 [pp. 1–18], 2015. DOI: 10.1142/S0129183115501405.
  • X. H. Tan, D. S. Zhu, G. Y. Zhou, and L. D. Zeng, “Heat transfer and pressure drop performance of twisted oval tube heat exchanger,” Appl. Therm. Eng., vol. 50, no. 1, pp. 374–383, 2013. DOI: 10.1016/j.applthermaleng.2012.06.037.
  • X. H. Tan, D. S. Zhu, G. Y. Zhou, and L. D. Zeng, “Experimental and numerical study of convective heat transfer and fluid flow in twisted oval tubes,” Int. J. Heat Mass Transf., vol. 55, no. 17–18, pp. 4701–4710, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.030.
  • X. H. Tan, D. S. Zhu, G. Y. Zhou, and L. Yang, “3D numerical simulation on the shell side heat transfer and pressure drop performances of twisted oval tube heat exchanger,” Int. J. Heat Mass Transf., vol. 65, pp. 244–253, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.011.
  • P. Promthaisong, W. Jedsadaratanachai, and S. Eiamsa-ard, “3D numerical study on the flow topology and heat transfer characteristics of turbulent forced convection in a spirally corrugated tube,” Numer. Heat Transfer A., vol. 69, no. 6, pp. 607–629, 2016. DOI: 10.1080/10407782.2015.1069670.
  • J. Lu, X. Sheng, J. Ding, and J. Yang, “Transition and turbulent convective heat transfer of molten salt in spirally grooved tube,” Exp. Therm. Fluid Sci., vol. 47, pp. 180–185, 2013. DOI: 10.1016/j.expthermflusci.2013.01.014.
  • A. Zachár, “Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall,” Int. J. Heat Mass Transfer., vol. 53, no. 19, pp. 3928–3939, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.011.
  • A. A. R. Darzi, M. Farhadi, and K. Sedighi, “Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nano-fluid within helically corrugated tubes,” Int. Commun. Heat Mass Transfer., vol. 39, no. 9, pp. 1425–1434, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.07.027.
  • A. A. R. Darzi, M. Farhadi, and K. Sedighi, “Experimental investigation of convective heat transfer and friction factor of Al2O3/water nano-fluid in helically corrugated tube,” Exp. Therm. Fluid Sci., vol. 57, pp. 188–199, 2014. DOI: 10.1016/j.expthermflusci.2014.04.024.
  • A. A. R. Darzi, M. Farhadi, and K. Sedighi, “Turbulent heat transfer of Al2O3–water nanofluid inside helically corrugated tubes: numerical study, Int. Commun. Heat Mass Transfer., vol. 41, pp. 68–75, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.11.006.
  • V. Zimparov, “Prediction of friction factors and heat transfer coefficients for turbulent flow in corrugated tubes combined with twisted tape inserts. Part 1: friction factors,” Int. J. Heat Mass Transfer., vol. 47, no. 3, pp. 589–599, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.08.004.
  • V. Zimparov, “Prediction of friction factors and heat transfer coefficients for turbulent flow in corrugated tubes combined with twisted Tape Inserts. Part 2: Heat Transfer Coefficients,” Int. J. Heat Mass Transfer., vol. 47, no. 2, pp. 385–393, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.08.004.
  • J. J. Liu, Z. C. Liu, and W. Liu, “3D numerical study on shell side heat transfer and flow characteristics of rod-baffle heat exchangers with spirally corrugated tubes,” Int. J. Therm. Sci., vol. 89, pp. 34–42, 2015. DOI: 10.1016/j.ijthermalsci.2014.10.011.
  • Z. S. Kareem, S. Abdullah, and T. M. Lazim, “Heat transfer enhancement in three-start spirally corrugated tube: experimental and numerical study,” Chem. Eng. Sci., vol. 134, pp. 746–757, 2015. DOI: 10.1016/j.ces.2015.06.009.
  • X. D. Chen, X. Y. Xu, and S. K. Nguang, “Characterization of the effect of corrugation angles on hydrodynamic and heat transfer performance of four-start spiral tubes,” J. Heat Transfer., vol. 123, no. 6, pp. 1149–1158, 2001. DOI: 10.1115/1.1409261.
  • P. Pitak, J. Withada, C. Varesa, and E. Smith, “Heat transfer and fluid flow behaviors in a five-start spiral corrugated tube,” AIP Conf. Proc., vol. 1879, p. 020005, 2017. DOI:10.1063/1.5000461.
  • Z. Jin et al., “CFD analysis on flow resistance characteristics of six-start spirally corrugated tube,” Int. J. Heat Mass Transfer., vol. 103, pp. 1198–1207, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.08.070.
  • Z. Jin, F. Chen, and Z. Gao, “Effects of pitch and corrugation depth on heat transfer characteristics in six-start spirally corrugated tube,” Int. J. Heat Mass Transfer., vol. 108, pp. 1011–1025, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.091.
  • J. Y. Qian, B. Z. Liu, and F. Q. Chen, “Field synergy analysis of six starts spiral corrugated tube under high reynolds number,” J. Phys. Conf. Ser., vol. 745, no. 3, 032070, 2016. DOI: 10.1088/1742-6596/745/3/032070.
  • B. R. Munson, D. F. Young, T. H. Okishi, and W. W. Huebsch, Fundamentals of Fluid Mechanics, 6th ed., New York, NY, USA: John Wiley & Sons, Chap. 8, 2009.